|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-multilingual-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: Full-8epoch-BERT-base-multilingual-finetuned-CEFR_ner-60000news |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Full-8epoch-BERT-base-multilingual-finetuned-CEFR_ner-60000news |
|
|
|
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0772 |
|
- Accuracy: 0.3055 |
|
- Precision: 0.5539 |
|
- Recall: 0.8444 |
|
- F1: 0.5463 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.1609 | 1.0 | 1563 | 0.1237 | 0.3003 | 0.5394 | 0.8062 | 0.5257 | |
|
| 0.1031 | 2.0 | 3126 | 0.0926 | 0.3033 | 0.5628 | 0.8280 | 0.5475 | |
|
| 0.0805 | 3.0 | 4689 | 0.0831 | 0.3043 | 0.5396 | 0.8360 | 0.5317 | |
|
| 0.0687 | 4.0 | 6252 | 0.0789 | 0.3048 | 0.5514 | 0.8404 | 0.5428 | |
|
| 0.0595 | 5.0 | 7815 | 0.0767 | 0.3051 | 0.5386 | 0.8415 | 0.5347 | |
|
| 0.0529 | 6.0 | 9378 | 0.0770 | 0.3053 | 0.5506 | 0.8425 | 0.5444 | |
|
| 0.048 | 7.0 | 10941 | 0.0765 | 0.3055 | 0.5516 | 0.8444 | 0.5451 | |
|
| 0.0453 | 8.0 | 12504 | 0.0772 | 0.3055 | 0.5539 | 0.8444 | 0.5463 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.2.1 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|