Safetensors
llama
Merge
mergekit
lazymergekit
huihui-ai/Llama-3.2-1B-Instruct-abliterated
NexesMess/Llama_3.2_1b_Abliteratest_SCE
xdrshjr/llama3.2_1b_uncensored_5000_8epoch_lora
diabolic6045/open-llama-3.2-1B-Instruct
phamhai/Llama-3.2-1B-CyberFrog
Nexesenex/Llama_3.2_1b_RandomLego_RP_R1_0.1
jtatman/llama-3.2-1b-lewd-mental-occult
Urvashi-1B-rp
Tiny-Urvashi-v5 is a merge of the following models using LazyMergekit:
- huihui-ai/Llama-3.2-1B-Instruct-abliterated
- NexesMess/Llama_3.2_1b_Abliteratest_SCE
- xdrshjr/llama3.2_1b_uncensored_5000_8epoch_lora
- diabolic6045/open-llama-3.2-1B-Instruct
- phamhai/Llama-3.2-1B-CyberFrog
- Nexesenex/Llama_3.2_1b_RandomLego_RP_R1_0.1
- jtatman/llama-3.2-1b-lewd-mental-occult
π§© Configuration
models:
- model: huihui-ai/Llama-3.2-1B-Instruct-abliterated
parameters:
weight: 1.2
density: 0.9
- model: NexesMess/Llama_3.2_1b_Abliteratest_SCE
parameters:
weight: 1.0
density: 0.9
- model: xdrshjr/llama3.2_1b_uncensored_5000_8epoch_lora
parameters:
weight: 1.0
density: 0.9
- model: diabolic6045/open-llama-3.2-1B-Instruct
parameters:
weight: 1.0
density: 0.9
- model: phamhai/Llama-3.2-1B-CyberFrog
parameters:
weight: 1.0
density: 0.9
- model: Nexesenex/Llama_3.2_1b_RandomLego_RP_R1_0.1
parameters:
weight: 1.0
density: 0.9
- model: jtatman/llama-3.2-1b-lewd-mental-occult
parameters:
weight: 1.0
density: 0.9
merge_method: sce
base_model: bunnycore/FuseChat-3.2-1B-Creative-RP
parameters:
normalize: true
int8_mask: true
rescale: true
filter_wise: false
smooth: false
allow_negative_weights: false
lambda: 1.0
select_topk: 0.1
tokenizer:
source: union
chat_template: auto
dtype: bfloat16
out_dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Divyansh008/Urvashi-1B-rp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for Divyansh008/Urvashi-1B-rp
Merge model
this model