drAbreu's picture
End of training
edf0b6c verified
metadata
library_name: transformers
license: apache-2.0
base_model: michiyasunaga/BioLinkBERT-base
tags:
  - generated_from_trainer
datasets:
  - source_data
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: SourceData_NER_v1_0_0_BioLinkBERT_base
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: source_data
          type: source_data
          config: NER
          split: validation
          args: NER
        metrics:
          - name: Precision
            type: precision
            value: 0.8158665922411387
          - name: Recall
            type: recall
            value: 0.8538277302333732
          - name: F1
            type: f1
            value: 0.8344156307534217

SourceData_NER_v1_0_0_BioLinkBERT_base

This model is a fine-tuned version of michiyasunaga/BioLinkBERT-base on the source_data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1369
  • Accuracy Score: 0.9565
  • Precision: 0.8159
  • Recall: 0.8538
  • F1: 0.8344

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use adafactor and the args are: No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Score Precision Recall F1
0.1138 1.0 864 0.1357 0.9535 0.8185 0.8297 0.8241
0.0807 2.0 1728 0.1369 0.9565 0.8159 0.8538 0.8344

Framework versions

  • Transformers 4.46.3
  • Pytorch 1.13.1+cu117
  • Datasets 3.1.0
  • Tokenizers 0.20.3