SourceData_NER_v1_0_0_PubMedBERT_base
This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract on the source_data dataset. It achieves the following results on the evaluation set:
- Loss: 0.1432
- Accuracy Score: 0.9557
- Precision: 0.8140
- Recall: 0.8536
- F1: 0.8333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- optimizer: Use adafactor and the args are: No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.1092 | 1.0 | 864 | 0.1403 | 0.9520 | 0.8061 | 0.8293 | 0.8175 |
0.075 | 2.0 | 1728 | 0.1432 | 0.9557 | 0.8140 | 0.8536 | 0.8333 |
Framework versions
- Transformers 4.46.3
- Pytorch 1.13.1+cu117
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 21
Model tree for EMBO/SourceData_NER_v1_0_0_PubMedBERT_base
Evaluation results
- Precision on source_datavalidation set self-reported0.814
- Recall on source_datavalidation set self-reported0.854
- F1 on source_datavalidation set self-reported0.833