See axolotl config
axolotl version: 0.8.0
base_model: THUDM/GLM-4-32B-0414
#base_model_ignore_patterns: "*/*"
# optionally might have model_type or tokenizer_type
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: anthracite-core/magnum-v5-sft-prototype-glm4-32b-lora
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: anthracite-core/magnum-v5-sft-proto-glm4-instruct-rev1
ds_type: parquet
type:
shuffle_merged_datasets: true
dataset_prepared_path: ./data/magnum-32b-data
val_set_size: 0.01
output_dir: ./data/32b-lora-out
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
#liger_rope: false
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
cut_cross_entropy: true
sequence_len: 32768
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 128
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
peft_use_rslora: true
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: 32b-magnum-lora
wandb_entity:
wandb_watch:
wandb_name: run4-Lora-0.001-clip
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 2
optimizer: paged_ademamix_8bit
lr_scheduler: cosine
learning_rate: 2e-4
max_grad_norm: 0.001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 40
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed: ./deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
magnum-v5-sft-prototype-glm4-32b-lora
This model is a fine-tuned version of THUDM/GLM-4-32B-0414 on the anthracite-core/magnum-v5-sft-proto-glm4-instruct-rev1 dataset. It achieves the following results on the evaluation set:
- Loss: 1.1075
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Use paged_ademamix_8bit and the args are: No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3541 | 0.0024 | 1 | 1.3336 |
1.1718 | 0.2503 | 103 | 1.1633 |
1.1976 | 0.5006 | 206 | 1.1460 |
1.095 | 0.7509 | 309 | 1.1339 |
1.1076 | 1.0 | 412 | 1.1213 |
1.1063 | 1.2503 | 515 | 1.1128 |
1.1214 | 1.5006 | 618 | 1.1089 |
1.0286 | 1.7509 | 721 | 1.1075 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 38
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Edens-Gate/GLM-v2-lora
Base model
THUDM/GLM-4-32B-0414