PEFT
Safetensors
glm4
axolotl
Generated from Trainer

Built with Axolotl

See axolotl config

axolotl version: 0.8.0

base_model: THUDM/GLM-4-32B-0414
#base_model_ignore_patterns: "*/*"
# optionally might have model_type or tokenizer_type
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: anthracite-core/magnum-v5-sft-prototype-glm4-32b-lora
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true


load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: anthracite-core/magnum-v5-sft-proto-glm4-instruct-rev1
    ds_type: parquet
    type:
shuffle_merged_datasets: true
dataset_prepared_path: ./data/magnum-32b-data
val_set_size: 0.01
output_dir: ./data/32b-lora-out

plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
#liger_rope: false
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
cut_cross_entropy: true

sequence_len: 32768
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 128
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
peft_use_rslora: true
lora_modules_to_save:
  - embed_tokens
  - lm_head

wandb_project: 32b-magnum-lora
wandb_entity:
wandb_watch:
wandb_name: run4-Lora-0.001-clip
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 2
optimizer: paged_ademamix_8bit
lr_scheduler: cosine
learning_rate: 2e-4
max_grad_norm: 0.001

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_steps: 40
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed: ./deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:

magnum-v5-sft-prototype-glm4-32b-lora

This model is a fine-tuned version of THUDM/GLM-4-32B-0414 on the anthracite-core/magnum-v5-sft-proto-glm4-instruct-rev1 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1075

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Use paged_ademamix_8bit and the args are: No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 40
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
1.3541 0.0024 1 1.3336
1.1718 0.2503 103 1.1633
1.1976 0.5006 206 1.1460
1.095 0.7509 309 1.1339
1.1076 1.0 412 1.1213
1.1063 1.2503 515 1.1128
1.1214 1.5006 618 1.1089
1.0286 1.7509 721 1.1075

Framework versions

  • PEFT 0.15.1
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
38
Safetensors
Model size
0 params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Edens-Gate/GLM-v2-lora

Adapter
(13)
this model