YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Guidelines for Loading Qwen3 (GPTQ) Quantized Models

Installation Setup

Download the GPTQ-for-Qwen_hf folder.

File Replacement

If you need to use the tests we provide, please download the files in the eval_my directory on GitHub and pay attention to the "Attention" section in the README:

  • Add eval_my directory: Place the eval_my directory under the GPTQ-for-Qwen directory.

Load the model

Group-wise Quantization

1. Perform GPTQ search

CUDA_VISIBLE_DEVICES=0 python path_of_qwen.py your_model_path \
--wbits model_wbit  --groupsize 128  \
--load path_of_.pth

2. Evaluate the quantized model

CUDA_VISIBLE_DEVICES=0 python path_of_qwen.py your_model_path \
--wbits model_wbit  --groupsize 128  \
--load path_of_.pth --eval

Per-channel Quantization

1. Perform GPTQ search

CUDA_VISIBLE_DEVICES=0 python path_of_qwen.py your_model_path \
--wbits model_wbit  --groupsize -1  \
--load path_of_.pth

2. Evaluate the quantized model

CUDA_VISIBLE_DEVICES=0 python path_of_qwen.py your_model_path \
--wbits model_wbit  --groupsize -1  \
--load path_of_.pth --eval

Notes

  • You need to input the corresponding wbit and groupsize parameters for the model; otherwise, loading errors may occur.
  • Set the groupsize parameter to -1 for per-channel quantization.
  • Make sure you have sufficient GPU memory to run a 32B-sized model
  • Check GitHub for more information.
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including Efficient-ML/GPTQ-for-Qwen3