medsiglip-448-ft-crc100k

This model is a fine-tuned version of google/medsiglip-448 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3957

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
2.0157 0.1696 50 1.3126
1.2948 0.3393 100 1.2470
1.2212 0.5089 150 1.2748
1.23 0.6785 200 1.2548
1.2481 0.8482 250 1.1919
1.2185 1.0170 300 1.1925
1.1155 1.1866 350 1.2026
1.1485 1.3562 400 1.1624
1.1534 1.5259 450 1.1593
1.1397 1.6955 500 1.1433
1.1196 1.8651 550 1.1361
1.0826 2.0339 600 1.1797
1.0308 2.2036 650 1.1511
1.0708 2.3732 700 1.1081
1.0575 2.5428 750 1.1451
1.0171 2.7125 800 1.1297
1.0203 2.8821 850 1.0809
1.0019 3.0509 900 1.0906
0.9815 3.2205 950 1.1364
0.941 3.3902 1000 1.0855
0.9998 3.5598 1050 1.0776
0.9542 3.7294 1100 1.0548
0.9459 3.8991 1150 1.1044
0.9768 4.0679 1200 1.0920
0.9572 4.2375 1250 1.1189
0.9052 4.4071 1300 1.1566
0.8447 4.5768 1350 1.1299
0.9008 4.7464 1400 1.0913
0.8784 4.9160 1450 1.1010
0.86 5.0848 1500 1.1310
0.8258 5.2545 1550 1.1896
0.84 5.4241 1600 1.2823
0.8637 5.5937 1650 1.2589
0.8488 5.7634 1700 1.1698
0.8298 5.9330 1750 1.2574
0.7697 6.1018 1800 1.2800
0.873 6.2714 1850 1.2326
0.7843 6.4411 1900 1.2283
0.8019 6.6107 1950 1.3048
0.7788 6.7803 2000 1.2452
0.7743 6.9500 2050 1.2635
0.7659 7.1187 2100 1.3144
0.8135 7.2884 2150 1.3114
0.7753 7.4580 2200 1.3197
0.7488 7.6277 2250 1.3256
0.7414 7.7973 2300 1.3678
0.7805 7.9669 2350 1.3413
0.7443 8.1357 2400 1.3732
0.7346 8.3053 2450 1.4000
0.7559 8.4750 2500 1.3945
0.7573 8.6446 2550 1.3864
0.7495 8.8142 2600 1.3861
0.6951 8.9839 2650 1.3784
0.7429 9.1527 2700 1.3987
0.7471 9.3223 2750 1.3968
0.7304 9.4919 2800 1.3966
0.778 9.6616 2850 1.3950
0.6908 9.8312 2900 1.3957
0.7074 10.0 2950 1.3957

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
32
Safetensors
Model size
878M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ElmanGhazaei/medsiglip-448-ft-crc100k

Finetuned
(9)
this model