medsiglip-448-ft-crc100k
This model is a fine-tuned version of google/medsiglip-448 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.3957
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0157 | 0.1696 | 50 | 1.3126 |
1.2948 | 0.3393 | 100 | 1.2470 |
1.2212 | 0.5089 | 150 | 1.2748 |
1.23 | 0.6785 | 200 | 1.2548 |
1.2481 | 0.8482 | 250 | 1.1919 |
1.2185 | 1.0170 | 300 | 1.1925 |
1.1155 | 1.1866 | 350 | 1.2026 |
1.1485 | 1.3562 | 400 | 1.1624 |
1.1534 | 1.5259 | 450 | 1.1593 |
1.1397 | 1.6955 | 500 | 1.1433 |
1.1196 | 1.8651 | 550 | 1.1361 |
1.0826 | 2.0339 | 600 | 1.1797 |
1.0308 | 2.2036 | 650 | 1.1511 |
1.0708 | 2.3732 | 700 | 1.1081 |
1.0575 | 2.5428 | 750 | 1.1451 |
1.0171 | 2.7125 | 800 | 1.1297 |
1.0203 | 2.8821 | 850 | 1.0809 |
1.0019 | 3.0509 | 900 | 1.0906 |
0.9815 | 3.2205 | 950 | 1.1364 |
0.941 | 3.3902 | 1000 | 1.0855 |
0.9998 | 3.5598 | 1050 | 1.0776 |
0.9542 | 3.7294 | 1100 | 1.0548 |
0.9459 | 3.8991 | 1150 | 1.1044 |
0.9768 | 4.0679 | 1200 | 1.0920 |
0.9572 | 4.2375 | 1250 | 1.1189 |
0.9052 | 4.4071 | 1300 | 1.1566 |
0.8447 | 4.5768 | 1350 | 1.1299 |
0.9008 | 4.7464 | 1400 | 1.0913 |
0.8784 | 4.9160 | 1450 | 1.1010 |
0.86 | 5.0848 | 1500 | 1.1310 |
0.8258 | 5.2545 | 1550 | 1.1896 |
0.84 | 5.4241 | 1600 | 1.2823 |
0.8637 | 5.5937 | 1650 | 1.2589 |
0.8488 | 5.7634 | 1700 | 1.1698 |
0.8298 | 5.9330 | 1750 | 1.2574 |
0.7697 | 6.1018 | 1800 | 1.2800 |
0.873 | 6.2714 | 1850 | 1.2326 |
0.7843 | 6.4411 | 1900 | 1.2283 |
0.8019 | 6.6107 | 1950 | 1.3048 |
0.7788 | 6.7803 | 2000 | 1.2452 |
0.7743 | 6.9500 | 2050 | 1.2635 |
0.7659 | 7.1187 | 2100 | 1.3144 |
0.8135 | 7.2884 | 2150 | 1.3114 |
0.7753 | 7.4580 | 2200 | 1.3197 |
0.7488 | 7.6277 | 2250 | 1.3256 |
0.7414 | 7.7973 | 2300 | 1.3678 |
0.7805 | 7.9669 | 2350 | 1.3413 |
0.7443 | 8.1357 | 2400 | 1.3732 |
0.7346 | 8.3053 | 2450 | 1.4000 |
0.7559 | 8.4750 | 2500 | 1.3945 |
0.7573 | 8.6446 | 2550 | 1.3864 |
0.7495 | 8.8142 | 2600 | 1.3861 |
0.6951 | 8.9839 | 2650 | 1.3784 |
0.7429 | 9.1527 | 2700 | 1.3987 |
0.7471 | 9.3223 | 2750 | 1.3968 |
0.7304 | 9.4919 | 2800 | 1.3966 |
0.778 | 9.6616 | 2850 | 1.3950 |
0.6908 | 9.8312 | 2900 | 1.3957 |
0.7074 | 10.0 | 2950 | 1.3957 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 32
Model tree for ElmanGhazaei/medsiglip-448-ft-crc100k
Base model
google/medsiglip-448