ElmanGhazaei commited on
Commit
8dc7a88
·
verified ·
1 Parent(s): 3b7328c

Model save

Browse files
Files changed (1) hide show
  1. README.md +61 -13
README.md CHANGED
@@ -16,7 +16,7 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [google/medsiglip-448](https://huggingface.co/google/medsiglip-448) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 1.0969
20
 
21
  ## Model description
22
 
@@ -44,23 +44,71 @@ The following hyperparameters were used during training:
44
  - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
45
  - lr_scheduler_type: cosine
46
  - lr_scheduler_warmup_steps: 5
47
- - num_epochs: 2
48
 
49
  ### Training results
50
 
51
  | Training Loss | Epoch | Step | Validation Loss |
52
  |:-------------:|:------:|:----:|:---------------:|
53
- | 2.0154 | 0.1696 | 50 | 1.3132 |
54
- | 1.2953 | 0.3393 | 100 | 1.2689 |
55
- | 1.2244 | 0.5089 | 150 | 1.2471 |
56
- | 1.2402 | 0.6785 | 200 | 1.2766 |
57
- | 1.2249 | 0.8482 | 250 | 1.1939 |
58
- | 1.2154 | 1.0170 | 300 | 1.1667 |
59
- | 1.1081 | 1.1866 | 350 | 1.1432 |
60
- | 1.1174 | 1.3562 | 400 | 1.1457 |
61
- | 1.1113 | 1.5259 | 450 | 1.1234 |
62
- | 1.1003 | 1.6955 | 500 | 1.1071 |
63
- | 1.0693 | 1.8651 | 550 | 1.0969 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
 
66
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [google/medsiglip-448](https://huggingface.co/google/medsiglip-448) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 1.3957
20
 
21
  ## Model description
22
 
 
44
  - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
45
  - lr_scheduler_type: cosine
46
  - lr_scheduler_warmup_steps: 5
47
+ - num_epochs: 10
48
 
49
  ### Training results
50
 
51
  | Training Loss | Epoch | Step | Validation Loss |
52
  |:-------------:|:------:|:----:|:---------------:|
53
+ | 2.0157 | 0.1696 | 50 | 1.3126 |
54
+ | 1.2948 | 0.3393 | 100 | 1.2470 |
55
+ | 1.2212 | 0.5089 | 150 | 1.2748 |
56
+ | 1.23 | 0.6785 | 200 | 1.2548 |
57
+ | 1.2481 | 0.8482 | 250 | 1.1919 |
58
+ | 1.2185 | 1.0170 | 300 | 1.1925 |
59
+ | 1.1155 | 1.1866 | 350 | 1.2026 |
60
+ | 1.1485 | 1.3562 | 400 | 1.1624 |
61
+ | 1.1534 | 1.5259 | 450 | 1.1593 |
62
+ | 1.1397 | 1.6955 | 500 | 1.1433 |
63
+ | 1.1196 | 1.8651 | 550 | 1.1361 |
64
+ | 1.0826 | 2.0339 | 600 | 1.1797 |
65
+ | 1.0308 | 2.2036 | 650 | 1.1511 |
66
+ | 1.0708 | 2.3732 | 700 | 1.1081 |
67
+ | 1.0575 | 2.5428 | 750 | 1.1451 |
68
+ | 1.0171 | 2.7125 | 800 | 1.1297 |
69
+ | 1.0203 | 2.8821 | 850 | 1.0809 |
70
+ | 1.0019 | 3.0509 | 900 | 1.0906 |
71
+ | 0.9815 | 3.2205 | 950 | 1.1364 |
72
+ | 0.941 | 3.3902 | 1000 | 1.0855 |
73
+ | 0.9998 | 3.5598 | 1050 | 1.0776 |
74
+ | 0.9542 | 3.7294 | 1100 | 1.0548 |
75
+ | 0.9459 | 3.8991 | 1150 | 1.1044 |
76
+ | 0.9768 | 4.0679 | 1200 | 1.0920 |
77
+ | 0.9572 | 4.2375 | 1250 | 1.1189 |
78
+ | 0.9052 | 4.4071 | 1300 | 1.1566 |
79
+ | 0.8447 | 4.5768 | 1350 | 1.1299 |
80
+ | 0.9008 | 4.7464 | 1400 | 1.0913 |
81
+ | 0.8784 | 4.9160 | 1450 | 1.1010 |
82
+ | 0.86 | 5.0848 | 1500 | 1.1310 |
83
+ | 0.8258 | 5.2545 | 1550 | 1.1896 |
84
+ | 0.84 | 5.4241 | 1600 | 1.2823 |
85
+ | 0.8637 | 5.5937 | 1650 | 1.2589 |
86
+ | 0.8488 | 5.7634 | 1700 | 1.1698 |
87
+ | 0.8298 | 5.9330 | 1750 | 1.2574 |
88
+ | 0.7697 | 6.1018 | 1800 | 1.2800 |
89
+ | 0.873 | 6.2714 | 1850 | 1.2326 |
90
+ | 0.7843 | 6.4411 | 1900 | 1.2283 |
91
+ | 0.8019 | 6.6107 | 1950 | 1.3048 |
92
+ | 0.7788 | 6.7803 | 2000 | 1.2452 |
93
+ | 0.7743 | 6.9500 | 2050 | 1.2635 |
94
+ | 0.7659 | 7.1187 | 2100 | 1.3144 |
95
+ | 0.8135 | 7.2884 | 2150 | 1.3114 |
96
+ | 0.7753 | 7.4580 | 2200 | 1.3197 |
97
+ | 0.7488 | 7.6277 | 2250 | 1.3256 |
98
+ | 0.7414 | 7.7973 | 2300 | 1.3678 |
99
+ | 0.7805 | 7.9669 | 2350 | 1.3413 |
100
+ | 0.7443 | 8.1357 | 2400 | 1.3732 |
101
+ | 0.7346 | 8.3053 | 2450 | 1.4000 |
102
+ | 0.7559 | 8.4750 | 2500 | 1.3945 |
103
+ | 0.7573 | 8.6446 | 2550 | 1.3864 |
104
+ | 0.7495 | 8.8142 | 2600 | 1.3861 |
105
+ | 0.6951 | 8.9839 | 2650 | 1.3784 |
106
+ | 0.7429 | 9.1527 | 2700 | 1.3987 |
107
+ | 0.7471 | 9.3223 | 2750 | 1.3968 |
108
+ | 0.7304 | 9.4919 | 2800 | 1.3966 |
109
+ | 0.778 | 9.6616 | 2850 | 1.3950 |
110
+ | 0.6908 | 9.8312 | 2900 | 1.3957 |
111
+ | 0.7074 | 10.0 | 2950 | 1.3957 |
112
 
113
 
114
  ### Framework versions