Model save
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: google/medsiglip-448
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: medsiglip-448-ft-crc100k
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# medsiglip-448-ft-crc100k
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [google/medsiglip-448](https://huggingface.co/google/medsiglip-448) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.0969
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0001
|
39 |
+
- train_batch_size: 2
|
40 |
+
- eval_batch_size: 2
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 8
|
43 |
+
- total_train_batch_size: 16
|
44 |
+
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
45 |
+
- lr_scheduler_type: cosine
|
46 |
+
- lr_scheduler_warmup_steps: 5
|
47 |
+
- num_epochs: 2
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
52 |
+
|:-------------:|:------:|:----:|:---------------:|
|
53 |
+
| 2.0154 | 0.1696 | 50 | 1.3132 |
|
54 |
+
| 1.2953 | 0.3393 | 100 | 1.2689 |
|
55 |
+
| 1.2244 | 0.5089 | 150 | 1.2471 |
|
56 |
+
| 1.2402 | 0.6785 | 200 | 1.2766 |
|
57 |
+
| 1.2249 | 0.8482 | 250 | 1.1939 |
|
58 |
+
| 1.2154 | 1.0170 | 300 | 1.1667 |
|
59 |
+
| 1.1081 | 1.1866 | 350 | 1.1432 |
|
60 |
+
| 1.1174 | 1.3562 | 400 | 1.1457 |
|
61 |
+
| 1.1113 | 1.5259 | 450 | 1.1234 |
|
62 |
+
| 1.1003 | 1.6955 | 500 | 1.1071 |
|
63 |
+
| 1.0693 | 1.8651 | 550 | 1.0969 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.56.1
|
69 |
+
- Pytorch 2.8.0+cu128
|
70 |
+
- Datasets 4.0.0
|
71 |
+
- Tokenizers 0.22.0
|