ElmanGhazaei commited on
Commit
f79e8d3
·
verified ·
1 Parent(s): b1d96a1

Model save

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: google/medsiglip-448
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: medsiglip-448-ft-crc100k
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # medsiglip-448-ft-crc100k
16
+
17
+ This model is a fine-tuned version of [google/medsiglip-448](https://huggingface.co/google/medsiglip-448) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.0969
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0001
39
+ - train_batch_size: 2
40
+ - eval_batch_size: 2
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 8
43
+ - total_train_batch_size: 16
44
+ - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
45
+ - lr_scheduler_type: cosine
46
+ - lr_scheduler_warmup_steps: 5
47
+ - num_epochs: 2
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss |
52
+ |:-------------:|:------:|:----:|:---------------:|
53
+ | 2.0154 | 0.1696 | 50 | 1.3132 |
54
+ | 1.2953 | 0.3393 | 100 | 1.2689 |
55
+ | 1.2244 | 0.5089 | 150 | 1.2471 |
56
+ | 1.2402 | 0.6785 | 200 | 1.2766 |
57
+ | 1.2249 | 0.8482 | 250 | 1.1939 |
58
+ | 1.2154 | 1.0170 | 300 | 1.1667 |
59
+ | 1.1081 | 1.1866 | 350 | 1.1432 |
60
+ | 1.1174 | 1.3562 | 400 | 1.1457 |
61
+ | 1.1113 | 1.5259 | 450 | 1.1234 |
62
+ | 1.1003 | 1.6955 | 500 | 1.1071 |
63
+ | 1.0693 | 1.8651 | 550 | 1.0969 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.56.1
69
+ - Pytorch 2.8.0+cu128
70
+ - Datasets 4.0.0
71
+ - Tokenizers 0.22.0