πŸ“Œ YOLOv8x Accident Evaluator

YOLOv8x-Accident-Evaluator is a custom object detection model trained to detect road accident scenarios and severity levels using the Roboflow Accident Evaluator dataset.

πŸš€ Model Details

  • Architecture: YOLOv8x (You Only Look Once, version 8, extra-large)
  • Trained by: Uppada Enos & Ultralytics Team
  • Contact: Uppada Enos
  • License: MIT

🏷️ Detection Classes

  • detected-injury
  • fire
  • high severity
  • low severity
  • medium severity
  • smoke

πŸ§ͺ Performance Metrics

Metric Score
[email protected] 0.697
[email protected]:0.95 0.438
Precision 0.764
Recall 0.646

Per-class [email protected]:

  • detected-injury: 0.741
  • fire: 0.611
  • high: 0.869
  • low: 0.834
  • medium: 0.795
  • smoke: 0.331

πŸ“‚ Usage

from ultralytics import YOLO

model = YOLO("Enos-123/accident-evaluator-yolov8x")

results = model("example.jpg", imgsz=640, conf=0.25)
results.show()
results.save(save_dir="inference_output")
Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for Enos-123/accident-evaluator-yolov8x

Base model

Ultralytics/YOLOv8
Finetuned
(74)
this model