LayoutLMv3-DocLayNet-small
This model is a fine-tuned version of microsoft/layoutlmv3-base on the doc_lay_net-small dataset. It achieves the following results on the evaluation set:
- Loss: 1.2781
- Precision: 0.1283
- Recall: 0.0759
- F1: 0.0954
- Accuracy: 0.6477
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- total_eval_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
Framework versions
- Transformers 4.51.3
- Pytorch 2.4.1
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for EslamAhmed/LayoutLMv3-DocLayNet-small
Base model
microsoft/layoutlmv3-baseEvaluation results
- Precision on doc_lay_net-smallvalidation set self-reported0.128
- Recall on doc_lay_net-smallvalidation set self-reported0.076
- F1 on doc_lay_net-smallvalidation set self-reported0.095
- Accuracy on doc_lay_net-smallvalidation set self-reported0.648