Tashkeel-700M

Arabic Diacritization Model | ู†ูŽู…ููˆุฐูุฌูŒ ุชูŽุดู’ูƒููŠู„ู ุงู„ู†ู‘ูุตููˆุตู ุงู„ู’ุนูŽุฑูŽุจููŠู‘ูŽุฉู

ู†ู…ูˆุฐุฌ ุจุญุฌู… 700 ู…ู„ูŠูˆู† ุจุงุฑุงู…ุชุฑ ู…ุฎุตุต ู„ุชุดูƒูŠู„ ุงู„ู†ุตูˆุต ุงู„ุนุฑุจูŠุฉ. ุชู… ุชุฏุฑูŠุจ ู‡ุฐุง ุงู„ู†ู…ูˆุฐุฌ ุจุถุจุท ู†ู…ูˆุฐุฌ

LiquidAI/LFM2-700M

ุนู„ู‰ ู…ุฌู…ูˆุนุฉ ุงู„ุจูŠุงู†ุงุช

arbml/tashkeela.

  • ุงู„ู†ู…ูˆุฐุฌ ุงู„ุฃุณุงุณูŠ: LiquidAI/LFM2-700M
  • ู…ุฌู…ูˆุนุฉ ุงู„ุจูŠุงู†ุงุช: arbml/tashkeela

ูƒูŠููŠุฉ ุงู„ุงุณุชุฎุฏุงู…

from transformers import AutoModelForCausalLM, AutoTokenizer

#ุชุญู…ูŠู„ ุงู„ู†ู…ูˆุฐุฌ
model_id = "Etherll/Tashkeel-700M"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype="bfloat16",
)
tokenizer = AutoTokenizer.from_pretrained(model_id)

# ุฅุถุงูุฉ ุงู„ุชุดูƒูŠู„
prompt = "ุงู„ุณู„ุงู… ุนู„ูŠูƒู…" 
input_ids = tokenizer.apply_chat_template(
    [{"role": "user", "content": prompt}],
    add_generation_prompt=True,
    return_tensors="pt",
    tokenize=True,
).to(model.device)

output = model.generate(
    input_ids,
    do_sample=False,  
)

print(tokenizer.decode(output[0, input_ids.shape[-1]:], skip_special_tokens=True))

ู…ุซุงู„

  • ุงู„ู†ุต ุงู„ู…ุฏุฎู„: ุงู„ุณู„ุงู… ุนู„ูŠูƒู…
  • ุงู„ู†ุงุชุฌ: ุงู„ุณู‘ูŽู„ูŽุงู…ู ุนูŽู„ูŽูŠู’ูƒูู…ู’


Tashkeel-700M (English)

A 700M parameter model for Arabic diacritization (Tashkeel). This model is a fine-tune of LiquidAI/LFM2-700M on the arbml/tashkeela dataset.

How to Use

The Python code for usage is the same as listed in the Arabic section above.

Example

  • Input: ุงู„ุณู„ุงู… ุนู„ูŠูƒู…
  • Output: ุงู„ุณู‘ูŽู„ูŽุงู…ู ุนูŽู„ูŽูŠู’ูƒูู…ู’

This lfm2 model was trained 2x faster with Unsloth and Huggingface's TRL library.

Downloads last month
-
Safetensors
Model size
742M params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Etherll/Tashkeel-700M

Base model

LiquidAI/LFM2-700M
Finetuned
(7)
this model

Dataset used to train Etherll/Tashkeel-700M