Waraqon: Arabic OCR Model
Fine-tuned Qwen2-VL-2B for Arabic OCR with HTML output.
Usage
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from PIL import Image
import torch
model = Qwen2VLForConditionalGeneration.from_pretrained(
"FatimahEmadEldin/Waraqon-Arabic-OCR-HTML-Qari-Fine-Tuned",
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
processor = AutoProcessor.from_pretrained("FatimahEmadEldin/Waraqon-Arabic-OCR-HTML-Qari-Fine-Tuned", trust_remote_code=True)
image = Image.open("image.jpg")
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "Extract text in HTML format."}
]
}]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt").to(model.device)
with torch.no_grad():
output_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(output)
License
Apache 2.0
- Downloads last month
- 38