Fradalessandro's picture
Update README.md
b2d5992 verified
metadata
library_name: transformers
license: apache-2.0
base_model: anferico/bert-for-patents
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: bert-for-patents-finetuned_ls-sys
    results: []

bert-for-patents-finetuned_ls-sys

This model is a fine-tuned version of anferico/bert-for-patents on a unique dataset consisting of 45392 patent applications, of which 10392 were defined as "LS-SYS-related" and 35000 as "Not LS-SYS-related". The fine-tuning is performed on patents' titles and abstracts. The base model was fine-tuned to perform a binary classification task, identifying patents related to the "Learning and Symbolic Systems" domain.

It achieves the following results on the evaluation set:

  • Loss: 0.0529
  • Accuracy: 0.981
  • Auc: 0.998
  • F1: 0.958
  • Precision: 0.962
  • Recall: 0.955

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Auc F1 Precision Recall
0.3254 1.0 993 0.1486 0.947 0.987 0.88 0.922 0.841
0.1237 2.0 1986 0.0887 0.969 0.995 0.931 0.945 0.918
0.0928 3.0 2979 0.0718 0.973 0.996 0.94 0.962 0.919
0.0811 4.0 3972 0.0635 0.977 0.997 0.949 0.96 0.939
0.0748 5.0 4965 0.0596 0.979 0.997 0.953 0.955 0.952
0.0695 6.0 5958 0.0563 0.98 0.997 0.955 0.962 0.949
0.0682 7.0 6951 0.0552 0.98 0.997 0.957 0.958 0.956
0.0664 8.0 7944 0.0537 0.981 0.997 0.958 0.961 0.954
0.0642 9.0 8937 0.0530 0.981 0.998 0.958 0.962 0.954
0.0647 10.0 9930 0.0529 0.981 0.998 0.958 0.962 0.955

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1