Edit model card

Google Safesearch Mini Model Card

Version 2 is here!

This model is trained on 2,220,000+ images scraped from Google Images, Reddit, Imgur, and Github. The InceptionV3 and Xception models have been fine-tuned to predict the likelihood of an image falling into one of three categories: nsfw_gore, nsfw_suggestive, and safe.

After 20 epochs on PyTorch, the finetuned InceptionV3 model achieves 94% acc on both training and test data. After 3.3 epochs on Keras, the finetuned Xception model scores 94% acc on training set and 92% on test set.

Not only is this model accurate, but it also offers a significant advantage over stable diffusion safety checkers. By using our model, users can save 1.12GB of RAM and disk space.


PyTorch

The PyTorch model runs much slower with transformers, so downloading it externally is a better option.

pip install --upgrade torchvision
import torch, os, warnings, requests
from io import BytesIO
from PIL import Image
from urllib.request import urlretrieve
from torchvision import transforms

PATH_TO_IMAGE = 'https://images.unsplash.com/photo-1594568284297-7c64464062b1'
USE_CUDA = False

warnings.filterwarnings("ignore")
def download_model():
    print("Downloading google_safesearch_mini.bin...")
    urlretrieve("https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/pytorch_model.bin", "google_safesearch_mini.bin")

def eval():
    if not os.path.exists("google_safesearch_mini.bin"):
        download_model()
    model = torch.jit.load('./google_safesearch_mini.bin')
    img = Image.open(PATH_TO_IMAGE).convert('RGB') if not (PATH_TO_IMAGE.startswith('http://') or PATH_TO_IMAGE.startswith('https://')) else Image.open(BytesIO(requests.get(PATH_TO_IMAGE).content)).convert('RGB')
    transform = transforms.Compose([transforms.Resize(299), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
    img = transform(img).unsqueeze(0)
    if USE_CUDA:
        img, model = img.cuda(), model.cuda()
    else:
        img, model = img.cpu(), model.cpu()
    model.eval()
    with torch.no_grad():
        out, _ = model(img)
        _, predicted = torch.max(out.data, 1)
        classes = {0: 'nsfw_gore', 1: 'nsfw_suggestive', 2: 'safe'}

        # account for edge cases
        if predicted[0] != 2 and abs(out[0][2] - out[0][predicted[0]]) > 0.20:
            img = Image.new('RGB', image.size, color = (0, 255, 255))
            print("\033[93m" + "safe" + "\033[0m")
        else:
            print('\n\033[1;31m' + classes[predicted.item()] + '\033[0m' if predicted.item() != 2 else '\033[1;32m' + classes[predicted.item()] + '\033[0m\n')

if __name__ == '__main__':
    eval()

Output Example: prediction


Keras

import tensorflow as tf
from PIL import Image
import requests, os

# download the model
url = "https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/saved_model.pb"
r = requests.get(url, allow_redirects=True)
if not os.path.exists('tensorflow'):
    os.makedirs('tensorflow')
open('tensorflow/saved_model.pb', 'wb').write(r.content)

# download the variables
url = "https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.data-00000-of-00001"
r = requests.get(url, allow_redirects=True)
if not os.path.exists('tensorflow/variables'):
    os.makedirs('tensorflow/variables')
open('tensorflow/variables/variables.data-00000-of-00001', 'wb').write(r.content)

url = "https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.index"
r = requests.get(url, allow_redirects=True)
open('tensorflow/variables/variables.index', 'wb').write(r.content)

# load the model
model = tf.saved_model.load('./tensorflow')
image = Image.open('cat.jpg')
image = image.resize((299, 299))
image = tf.convert_to_tensor(image)
image = tf.expand_dims(image, 0)

# run the model
tensor = model(image)
classes = ['nsfw_gore', 'nsfw_suggestive', 'safe']
prediction = classes[tf.argmax(tensor, 1)[0]]
print('\033[1;32m' + prediction + '\033[0m' if prediction == 'safe' else '\033[1;33m' + prediction + '\033[0m')

Output Example: prediction


Tensorflow.js

npm i @tensorflow/tfjs-node
const tf = require('@tensorflow/tfjs-node');
const fs = require('fs');
const { pipeline } = require('stream');
const { promisify } = require('util');


const download = async (url, path) => {
    // Taken from https://levelup.gitconnected.com/how-to-download-a-file-with-node-js-e2b88fe55409

    const streamPipeline = promisify(pipeline);
    const response = await fetch(url);

    if (!response.ok) {
        throw new Error(`unexpected response ${response.statusText}`);
    }

    await streamPipeline(response.body, fs.createWriteStream(path));
};


async function run() {
    // download saved model and variables from https://huggingface.co/FredZhang7/google-safesearch-mini/tree/main/tensorflow
    if (!fs.existsSync('tensorflow')) {
        fs.mkdirSync('tensorflow');
        await download('https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/saved_model.pb', 'tensorflow/saved_model.pb');
        fs.mkdirSync('tensorflow/variables');
        await download('https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.data-00000-of-00001', 'tensorflow/variables/variables.data-00000-of-00001');
        await download('https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.index', 'tensorflow/variables/variables.index');
    }

    // load model and image
    const model = await tf.node.loadSavedModel('./tensorflow/');
    const image = tf.node.decodeImage(fs.readFileSync('cat.jpg'), 3);

    // predict
    const input = tf.expandDims(image, 0);
    const tensor = model.predict(input);
    const max = tensor.argMax(1);
    const classes = ['nsfw_gore', 'nsfw_suggestive', 'safe'];
    console.log('\x1b[32m%s\x1b[0m', classes[max.dataSync()[0]], '\n');
}

run();

Output Example: tfjs output


Bias and Limitations

Each person's definition of "safe" is different. The images in the dataset are classified as safe/unsafe by Google SafeSearch, Reddit, and Imgur. It is possible that some images may be safe to others but not to you. Also, when a model encounters an image with things it hasn't seen, it likely makes wrong predictions. This is why in the PyTorch example, I accounted for the "edge cases" before printing the predictions.

Downloads last month
0
Inference Examples
Inference API (serverless) does not yet support tf-keras models for this pipeline type.