Text Generation
Transformers
Safetensors
English
llava_phi
custom_code
Edit model card

ALLaVA: Harnessing GPT4V-synthesized Data for A Lite Vision-Language Model

⚑ALLaVA is a project that provides a large-scale GPT4V-synthesized dataset for training LVLMs.⚑

πŸ“ƒ Paper β€’ 🌐 Demo β€’ πŸ‘¨πŸ»β€πŸ’» Github

πŸ€— ALLaVA-4V Dataset

πŸ€— ALLaVA-3B-Longer β€’ πŸ€— ALLaVA-3B

Benchmark Result

Our model ALLaVA-3B-Longer and ALLaVA-3B achieve competitive results on 12 benchmarks. Bold numbers denote the SOTA performance among 3B-scale models.

Model Backbone Vicuna-80 MMB SEEDBench-v1 (img) MM-Vet MMMU (val) MME TextVQA GQA EMT (CIFAR10) MLLM-Bench TouchStone LLaVA (In-the-Wild)
Qwen-VL-Chat Qwen-7B - 60.6 65.4 - 35.9 1487.5 61.5 57.5 - 6.2 711.6 -
LLaVA-v1.5-7B Vicuna-7B - 64.3 - 31.1 - 1510.7 58.2 62.0 - - 65.4
LLaVA-v1.5-13B Vicuna-13B 22.50 67.7 68.2 35.4 36.4 1531.3 61.3 63.3 85.0 7.4 637.7 70.7
ShareGPT4V-7B Vicuna-7B - 68.8 69.7 37.6 - 1943.8 60.4 63.3 - - - 72.6
TinyGPT-V Phi2-2.7B - - - - - - - 33.6 - - - -
MobileVLM MobileLLaMA-2.7B - 59.6 - - - 1288.9 47.5 - - - - -
LLaVA-Phi Phi2-2.7B - 59.8 - 28.9 - 1335.1 48.6 - - - - -
ALLaVA-3B Phi2-2.7B 48.8 64.0 65.2 32.2 35.3 1623.2 49.5 48.8 90.2 6.7 632.0 69.4
ALLaVA-3B-Longer Phi2-2.7B 52.5 64.6 65.6 35.5 33.2 1564.6 50.3 50.0 85.9 8.8 636.5 71.7

The detailed information of each benchmark is shown in Table 4 of our technical report.

🏭 Inference

Load from πŸ€— (Recommended)

See the example script.

CLI

See here for CLI code snippet.

πŸ‹οΈβ€β™‚οΈ Training

Data

training_datasets

As shown in the table, ALLaVA-3B uses 1M and 1.5M data for PT. and FT., respectively. ALLaVA-3B-Longer trains one more epoch (i.e. 3M in total) for the FT. stage.

Code

The training code is largely based on LLaVA-v1.5. We wholeheartedly express our gratitude for their invaluable contributions to open-sourcing LVLMs.

Cost

We train our models on 8*A800 GPUs. ALLaVA-3B-Longer takes 8.3h for PT and 21.3h for FT. ALLaVA-3B takes 8.3h for PT and 10.6h for FT. These two models share the same PT procedure.

Hyperparameters

Global Batch Size ZeRO Stage Optimizer Max LR Min LR Scheduler Max length Weight decay
256 (PT) / 128 (FT) 1 AdamW 2e-5 2e-6 CosineAnnealingWarmRestarts 2048 0

The LM backbone, projector are trainable, while the vision encoder is kept frozen. The trainabilities of each module are the same for both stages.

πŸ“š ALLaVA-4V Data

The majority part of training data is ALLaVA-4V. See here to prepare it for training.

πŸ™Œ Contributors

πŸ“ Citation

If you find our data useful, please consider citing our work! We are FreedomIntelligence from Shenzhen Research Institute of Big Data and The Chinese University of Hong Kong, Shenzhen

@article{chen2024allava,
  title={ALLaVA: Harnessing GPT4V-synthesized Data for A Lite Vision-Language Model},
  author={Chen, Guiming Hardy and Chen, Shunian and Zhang, Ruifei and Chen, Junying and Wu, Xiangbo and Zhang, Zhiyi and Chen, Zhihong and Li, Jianquan and Wan, Xiang and Wang, Benyou},
  journal={arXiv preprint arXiv:2402.11684},
  year={2024}
}
Downloads last month
32
Safetensors
Model size
3.09B params
Tensor type
BF16
Β·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Dataset used to train FreedomIntelligence/ALLaVA-3B-Longer