SetFit with BAAI/bge-small-en-v1.5

This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • 'Calcite'
  • 'biotite. Contact metamorphosis'
  • 'rail trail'
1
  • 'Geafitti on tree and burn scar on ground'
  • 'another beautiful rock from the same place'
  • 'Vhfgv'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the ๐Ÿค— Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("scenic overview")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 7.2788 1899
Label Training Sample Count
0 2997
1 783

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0002 1 0.2331 -
0.0106 50 0.2391 -
0.0212 100 0.238 -
0.0317 150 0.2309 -
0.0423 200 0.2117 -
0.0529 250 0.1879 -
0.0635 300 0.1745 -
0.0741 350 0.1708 -
0.0847 400 0.1402 -
0.0952 450 0.1349 -
0.1058 500 0.1092 -
0.1164 550 0.1031 -
0.1270 600 0.0828 -
0.1376 650 0.0756 -
0.1481 700 0.0587 -
0.1587 750 0.0487 -
0.1693 800 0.0557 -
0.1799 850 0.0456 -
0.1905 900 0.0371 -
0.2011 950 0.0412 -
0.2116 1000 0.0382 -
0.2222 1050 0.0376 -
0.2328 1100 0.0353 -
0.2434 1150 0.0346 -
0.2540 1200 0.0364 -
0.2646 1250 0.0317 -
0.2751 1300 0.0374 -
0.2857 1350 0.0282 -
0.2963 1400 0.0255 -
0.3069 1450 0.023 -
0.3175 1500 0.0287 -
0.3280 1550 0.025 -
0.3386 1600 0.0216 -
0.3492 1650 0.0241 -
0.3598 1700 0.0234 -
0.3704 1750 0.0279 -
0.3810 1800 0.0239 -
0.3915 1850 0.0199 -
0.4021 1900 0.0252 -
0.4127 1950 0.0219 -
0.4233 2000 0.0228 -
0.4339 2050 0.0204 -
0.4444 2100 0.0231 -
0.4550 2150 0.0144 -
0.4656 2200 0.0229 -
0.4762 2250 0.0129 -
0.4868 2300 0.0219 -
0.4974 2350 0.0194 -
0.5079 2400 0.0172 -
0.5185 2450 0.0177 -
0.5291 2500 0.0252 -
0.5397 2550 0.0251 -
0.5503 2600 0.014 -
0.5608 2650 0.0204 -
0.5714 2700 0.0248 -
0.5820 2750 0.0146 -
0.5926 2800 0.0191 -
0.6032 2850 0.0223 -
0.6138 2900 0.0206 -
0.6243 2950 0.0163 -
0.6349 3000 0.0235 -
0.6455 3050 0.0245 -
0.6561 3100 0.0199 -
0.6667 3150 0.0145 -
0.6772 3200 0.016 -
0.6878 3250 0.0143 -
0.6984 3300 0.0206 -
0.7090 3350 0.0187 -
0.7196 3400 0.0168 -
0.7302 3450 0.0148 -
0.7407 3500 0.0212 -
0.7513 3550 0.0185 -
0.7619 3600 0.015 -
0.7725 3650 0.0187 -
0.7831 3700 0.0161 -
0.7937 3750 0.0204 -
0.8042 3800 0.0182 -
0.8148 3850 0.0157 -
0.8254 3900 0.0197 -
0.8360 3950 0.0133 -
0.8466 4000 0.0211 -
0.8571 4050 0.0155 -
0.8677 4100 0.0197 -
0.8783 4150 0.0168 -
0.8889 4200 0.0139 -
0.8995 4250 0.0132 -
0.9101 4300 0.018 -
0.9206 4350 0.014 -
0.9312 4400 0.017 -
0.9418 4450 0.0173 -
0.9524 4500 0.0163 -
0.9630 4550 0.0178 -
0.9735 4600 0.0176 -
0.9841 4650 0.0126 -
0.9947 4700 0.0194 -

Framework Versions

  • Python: 3.12.9
  • SetFit: 1.1.2
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.7.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
118
Safetensors
Model size
33.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for FriedGil/rockd-image-relevance-classification

Finetuned
(193)
this model