SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the ๐ค Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("scenic overview")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 7.2788 | 1899 |
Label | Training Sample Count |
---|---|
0 | 2997 |
1 | 783 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0002 | 1 | 0.2331 | - |
0.0106 | 50 | 0.2391 | - |
0.0212 | 100 | 0.238 | - |
0.0317 | 150 | 0.2309 | - |
0.0423 | 200 | 0.2117 | - |
0.0529 | 250 | 0.1879 | - |
0.0635 | 300 | 0.1745 | - |
0.0741 | 350 | 0.1708 | - |
0.0847 | 400 | 0.1402 | - |
0.0952 | 450 | 0.1349 | - |
0.1058 | 500 | 0.1092 | - |
0.1164 | 550 | 0.1031 | - |
0.1270 | 600 | 0.0828 | - |
0.1376 | 650 | 0.0756 | - |
0.1481 | 700 | 0.0587 | - |
0.1587 | 750 | 0.0487 | - |
0.1693 | 800 | 0.0557 | - |
0.1799 | 850 | 0.0456 | - |
0.1905 | 900 | 0.0371 | - |
0.2011 | 950 | 0.0412 | - |
0.2116 | 1000 | 0.0382 | - |
0.2222 | 1050 | 0.0376 | - |
0.2328 | 1100 | 0.0353 | - |
0.2434 | 1150 | 0.0346 | - |
0.2540 | 1200 | 0.0364 | - |
0.2646 | 1250 | 0.0317 | - |
0.2751 | 1300 | 0.0374 | - |
0.2857 | 1350 | 0.0282 | - |
0.2963 | 1400 | 0.0255 | - |
0.3069 | 1450 | 0.023 | - |
0.3175 | 1500 | 0.0287 | - |
0.3280 | 1550 | 0.025 | - |
0.3386 | 1600 | 0.0216 | - |
0.3492 | 1650 | 0.0241 | - |
0.3598 | 1700 | 0.0234 | - |
0.3704 | 1750 | 0.0279 | - |
0.3810 | 1800 | 0.0239 | - |
0.3915 | 1850 | 0.0199 | - |
0.4021 | 1900 | 0.0252 | - |
0.4127 | 1950 | 0.0219 | - |
0.4233 | 2000 | 0.0228 | - |
0.4339 | 2050 | 0.0204 | - |
0.4444 | 2100 | 0.0231 | - |
0.4550 | 2150 | 0.0144 | - |
0.4656 | 2200 | 0.0229 | - |
0.4762 | 2250 | 0.0129 | - |
0.4868 | 2300 | 0.0219 | - |
0.4974 | 2350 | 0.0194 | - |
0.5079 | 2400 | 0.0172 | - |
0.5185 | 2450 | 0.0177 | - |
0.5291 | 2500 | 0.0252 | - |
0.5397 | 2550 | 0.0251 | - |
0.5503 | 2600 | 0.014 | - |
0.5608 | 2650 | 0.0204 | - |
0.5714 | 2700 | 0.0248 | - |
0.5820 | 2750 | 0.0146 | - |
0.5926 | 2800 | 0.0191 | - |
0.6032 | 2850 | 0.0223 | - |
0.6138 | 2900 | 0.0206 | - |
0.6243 | 2950 | 0.0163 | - |
0.6349 | 3000 | 0.0235 | - |
0.6455 | 3050 | 0.0245 | - |
0.6561 | 3100 | 0.0199 | - |
0.6667 | 3150 | 0.0145 | - |
0.6772 | 3200 | 0.016 | - |
0.6878 | 3250 | 0.0143 | - |
0.6984 | 3300 | 0.0206 | - |
0.7090 | 3350 | 0.0187 | - |
0.7196 | 3400 | 0.0168 | - |
0.7302 | 3450 | 0.0148 | - |
0.7407 | 3500 | 0.0212 | - |
0.7513 | 3550 | 0.0185 | - |
0.7619 | 3600 | 0.015 | - |
0.7725 | 3650 | 0.0187 | - |
0.7831 | 3700 | 0.0161 | - |
0.7937 | 3750 | 0.0204 | - |
0.8042 | 3800 | 0.0182 | - |
0.8148 | 3850 | 0.0157 | - |
0.8254 | 3900 | 0.0197 | - |
0.8360 | 3950 | 0.0133 | - |
0.8466 | 4000 | 0.0211 | - |
0.8571 | 4050 | 0.0155 | - |
0.8677 | 4100 | 0.0197 | - |
0.8783 | 4150 | 0.0168 | - |
0.8889 | 4200 | 0.0139 | - |
0.8995 | 4250 | 0.0132 | - |
0.9101 | 4300 | 0.018 | - |
0.9206 | 4350 | 0.014 | - |
0.9312 | 4400 | 0.017 | - |
0.9418 | 4450 | 0.0173 | - |
0.9524 | 4500 | 0.0163 | - |
0.9630 | 4550 | 0.0178 | - |
0.9735 | 4600 | 0.0176 | - |
0.9841 | 4650 | 0.0126 | - |
0.9947 | 4700 | 0.0194 | - |
Framework Versions
- Python: 3.12.9
- SetFit: 1.1.2
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.7.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 118
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for FriedGil/rockd-image-relevance-classification
Base model
BAAI/bge-small-en-v1.5