whisper-small-dv / README.md
Frorozcol's picture
End of training
89fa966
|
raw
history blame
2.35 kB
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-small-dv
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 34.454756380510446

whisper-small-dv

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8668
  • Wer Ortho: 34.2615
  • Wer: 34.4548

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0012 17.86 500 0.6821 33.2324 33.6427
0.0002 35.71 1000 0.7362 34.0194 34.0487
0.0001 53.57 1500 0.7689 33.9588 33.9907
0.0001 71.43 2000 0.7934 34.5036 34.4548
0.0 89.29 2500 0.8168 34.4431 34.3968
0.0 107.14 3000 0.8352 34.5642 34.5708
0.0 125.0 3500 0.8514 34.3220 34.5128
0.0 142.86 4000 0.8668 34.2615 34.4548

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0