metadata
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: >-
Gamenya:Gamenya oke bagus saya suka, yg saya tidak suka joystick nya
pindah² ga bsa netep disatu tempat jadi pada saat mau gerak suka susah
nyangkut dan ga terbiasa dg joystick yg bisa pindah²
- text: >-
game:kekurangan game ini, 1-) PETI terbatas : saya berharap ini diubah
menjadi seperti CLASH ROYALE, karena koin di game ini tidak bisa didapat
setiap waktu, Kecuali top up. 2-) Tier/rank : tolong di tambah sistem
rank, karena sistem rank akan membuat banyak player bersaing dan menambah
keseruan karna ada tantangan ( seperti Clash Royale ).. 3-) Sinyal & bug (
sinyal mendadak lemah dan gk bisa masuk pertandingan ) : karena game ini
masih baru jadi wajar, tapi tolong diperbaiki untuk kenyamanan pemain
- text: >-
diam:Gamenya sih udah bagus, Grafik juga bagus, pertempurannya juga udah
bagus dan menarik, tapi ada masalah yang bikin kesel nih game yaitu
analognya ngikut gak bisa di setting jadi diam aja, itu bikin gak nyaman
banget sih buat gameplaynya.
- text: >-
analognya:Kekurangan game ini peti nya terbatas dan tolong adakan setingan
analognya supaya fix posisi nya dan tolong di permudah dapat goldnya, over
all game ini udah bagus
- text: >-
gara gara analog:masalah analog yang belum anda perbaiki memberikan
pengalaman geme yang buruk jika Dev ingin memperbaiki masalah bug analog
saya akan memberikan 5 bintang win strike saya terpecah cuma gara gara
analog ini kanjud
pipeline_tag: text-classification
inference: false
SetFit Aspect Model
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). A LogisticRegression instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use this SetFit model to filter these possible aspect span candidates.
- Use a SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a LogisticRegression instance
- spaCy Model: id_core_news_trf
- SetFitABSA Aspect Model: Funnyworld1412/ABSA_game_squad_busters-aspect
- SetFitABSA Polarity Model: Funnyworld1412/ABSA_game_squad_busters-polarity
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
aspect |
|
no aspect |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"Funnyworld1412/ABSA_game_squad_busters-aspect",
"Funnyworld1412/ABSA_game_squad_busters-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 6 | 42.9092 | 90 |
Label | Training Sample Count |
---|---|
no aspect | 2181 |
aspect | 506 |
Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.3499 | - |
0.0037 | 50 | 0.2258 | - |
0.0074 | 100 | 0.1438 | - |
0.0112 | 150 | 0.3667 | - |
0.0149 | 200 | 0.2931 | - |
0.0186 | 250 | 0.3144 | - |
0.0223 | 300 | 0.1334 | - |
0.0261 | 350 | 0.0919 | - |
0.0298 | 400 | 0.3432 | - |
0.0335 | 450 | 0.2318 | - |
0.0001 | 1 | 0.2543 | - |
0.0037 | 50 | 0.2765 | - |
0.0074 | 100 | 0.254 | - |
0.0112 | 150 | 0.0406 | - |
0.0149 | 200 | 0.0707 | - |
0.0186 | 250 | 0.0344 | - |
0.0223 | 300 | 0.0112 | - |
0.0261 | 350 | 0.4567 | - |
0.0298 | 400 | 0.2479 | - |
0.0335 | 450 | 0.0487 | - |
0.0372 | 500 | 0.1762 | - |
0.0409 | 550 | 0.1578 | - |
0.0447 | 600 | 0.319 | - |
0.0484 | 650 | 0.0443 | - |
0.0521 | 700 | 0.42 | - |
0.0558 | 750 | 0.1629 | - |
0.0595 | 800 | 0.2677 | - |
0.0633 | 850 | 0.0027 | - |
0.0670 | 900 | 0.2256 | - |
0.0707 | 950 | 0.0044 | - |
0.0744 | 1000 | 0.0248 | - |
0.0782 | 1050 | 0.0387 | - |
0.0819 | 1100 | 0.0129 | - |
0.0856 | 1150 | 0.0867 | - |
0.0893 | 1200 | 0.0801 | - |
0.0930 | 1250 | 0.1524 | - |
0.0968 | 1300 | 0.3153 | - |
0.1005 | 1350 | 0.1654 | - |
0.1042 | 1400 | 0.0051 | - |
0.1079 | 1450 | 0.0131 | - |
0.1116 | 1500 | 0.0052 | - |
0.1154 | 1550 | 0.0153 | - |
0.1191 | 1600 | 0.1445 | - |
0.1228 | 1650 | 0.0005 | - |
0.1265 | 1700 | 0.0021 | - |
0.1303 | 1750 | 0.3321 | - |
0.1340 | 1800 | 0.1726 | - |
0.1377 | 1850 | 0.3157 | - |
0.1414 | 1900 | 0.0264 | - |
0.1451 | 1950 | 0.2539 | - |
0.1489 | 2000 | 0.1556 | - |
0.1526 | 2050 | 0.0294 | - |
0.1563 | 2100 | 0.1472 | - |
0.1600 | 2150 | 0.0203 | - |
0.1638 | 2200 | 0.2612 | - |
0.1675 | 2250 | 0.0182 | - |
0.1712 | 2300 | 0.4155 | - |
0.1749 | 2350 | 0.0143 | - |
0.1786 | 2400 | 0.0013 | - |
0.1824 | 2450 | 0.36 | - |
0.1861 | 2500 | 0.2805 | - |
0.1898 | 2550 | 0.1571 | - |
0.1935 | 2600 | 0.0925 | - |
0.1972 | 2650 | 0.1762 | - |
0.2010 | 2700 | 0.2168 | - |
0.2047 | 2750 | 0.0002 | - |
0.2084 | 2800 | 0.0706 | - |
0.2121 | 2850 | 0.5384 | - |
0.2159 | 2900 | 0.0003 | - |
0.2196 | 2950 | 0.3476 | - |
0.2233 | 3000 | 0.0143 | - |
0.2270 | 3050 | 0.0052 | - |
0.2307 | 3100 | 0.1282 | - |
0.2345 | 3150 | 0.0004 | - |
0.2382 | 3200 | 0.0165 | - |
0.2419 | 3250 | 0.0077 | - |
0.2456 | 3300 | 0.011 | - |
0.2493 | 3350 | 0.0098 | - |
0.2531 | 3400 | 0.0104 | - |
0.2568 | 3450 | 0.0378 | - |
0.2605 | 3500 | 0.0294 | - |
0.2642 | 3550 | 0.1213 | - |
0.2680 | 3600 | 0.0 | - |
0.2717 | 3650 | 0.0021 | - |
0.2754 | 3700 | 0.0017 | - |
0.2791 | 3750 | 0.0273 | - |
0.2828 | 3800 | 0.012 | - |
0.2866 | 3850 | 0.008 | - |
0.2903 | 3900 | 0.0047 | - |
0.2940 | 3950 | 0.0034 | - |
0.2977 | 4000 | 0.0006 | - |
0.3015 | 4050 | 0.1756 | - |
0.3052 | 4100 | 0.1939 | - |
0.3089 | 4150 | 0.1627 | - |
0.3126 | 4200 | 0.0004 | - |
0.3163 | 4250 | 0.2098 | - |
0.3201 | 4300 | 0.002 | - |
0.3238 | 4350 | 0.2378 | - |
0.3275 | 4400 | 0.2552 | - |
0.3312 | 4450 | 0.0074 | - |
0.3349 | 4500 | 0.002 | - |
0.3387 | 4550 | 0.0152 | - |
0.3424 | 4600 | 0.0031 | - |
0.3461 | 4650 | 0.0684 | - |
0.3498 | 4700 | 0.0023 | - |
0.3536 | 4750 | 0.2301 | - |
0.3573 | 4800 | 0.0155 | - |
0.3610 | 4850 | 0.0774 | - |
0.3647 | 4900 | 0.0005 | - |
0.3684 | 4950 | 0.0013 | - |
0.3722 | 5000 | 0.055 | - |
0.3759 | 5050 | 0.006 | - |
0.3796 | 5100 | 0.0534 | - |
0.3833 | 5150 | 0.2006 | - |
0.3870 | 5200 | 0.2059 | - |
0.3908 | 5250 | 0.2467 | - |
0.3945 | 5300 | 0.0038 | - |
0.3982 | 5350 | 0.0004 | - |
0.4019 | 5400 | 0.0009 | - |
0.4057 | 5450 | 0.0002 | - |
0.4094 | 5500 | 0.2144 | - |
0.4131 | 5550 | 0.0623 | - |
0.4168 | 5600 | 0.0007 | - |
0.4205 | 5650 | 0.3073 | - |
0.4243 | 5700 | 0.0001 | - |
0.4280 | 5750 | 0.1286 | - |
0.4317 | 5800 | 0.179 | - |
0.4354 | 5850 | 0.2131 | - |
0.4392 | 5900 | 0.0005 | - |
0.4429 | 5950 | 0.1989 | - |
0.4466 | 6000 | 0.1981 | - |
0.4503 | 6050 | 0.0004 | - |
0.4540 | 6100 | 0.0001 | - |
0.4578 | 6150 | 0.4378 | - |
0.4615 | 6200 | 0.0008 | - |
0.4652 | 6250 | 0.1022 | - |
0.4689 | 6300 | 0.0002 | - |
0.4726 | 6350 | 0.0648 | - |
0.4764 | 6400 | 0.2756 | - |
0.4801 | 6450 | 0.1552 | - |
0.4838 | 6500 | 0.0524 | - |
0.4875 | 6550 | 0.2472 | - |
0.4913 | 6600 | 0.3239 | - |
0.4950 | 6650 | 0.1255 | - |
0.4987 | 6700 | 0.0293 | - |
0.5024 | 6750 | 0.0 | - |
0.5061 | 6800 | 0.001 | - |
0.5099 | 6850 | 0.0008 | - |
0.5136 | 6900 | 0.2881 | - |
0.5173 | 6950 | 0.0002 | - |
0.5210 | 7000 | 0.0008 | - |
0.5247 | 7050 | 0.1938 | - |
0.5285 | 7100 | 0.0965 | - |
0.5322 | 7150 | 0.1608 | - |
0.5359 | 7200 | 0.088 | - |
0.5396 | 7250 | 0.0003 | - |
0.5434 | 7300 | 0.0129 | - |
0.5471 | 7350 | 0.0027 | - |
0.5508 | 7400 | 0.0805 | - |
0.5545 | 7450 | 0.0059 | - |
0.5582 | 7500 | 0.2299 | - |
0.5620 | 7550 | 0.0042 | - |
0.5657 | 7600 | 0.0097 | - |
0.5694 | 7650 | 0.0 | - |
0.5731 | 7700 | 0.1738 | - |
0.5769 | 7750 | 0.0002 | - |
0.5806 | 7800 | 0.0003 | - |
0.5843 | 7850 | 0.0 | - |
0.5880 | 7900 | 0.0889 | - |
0.5917 | 7950 | 0.0769 | - |
0.5955 | 8000 | 0.0003 | - |
0.5992 | 8050 | 0.0 | - |
0.6029 | 8100 | 0.0003 | - |
0.6066 | 8150 | 0.0 | - |
0.6103 | 8200 | 0.0 | - |
0.6141 | 8250 | 0.0008 | - |
0.6178 | 8300 | 0.0002 | - |
0.6215 | 8350 | 0.0001 | - |
0.6252 | 8400 | 0.0004 | - |
0.6290 | 8450 | 0.0003 | - |
0.6327 | 8500 | 0.0052 | - |
0.6364 | 8550 | 0.1168 | - |
0.6401 | 8600 | 0.0029 | - |
0.6438 | 8650 | 0.0004 | - |
0.6476 | 8700 | 0.0003 | - |
0.6513 | 8750 | 0.0256 | - |
0.6550 | 8800 | 0.0473 | - |
0.6587 | 8850 | 0.0002 | - |
0.6624 | 8900 | 0.0001 | - |
0.6662 | 8950 | 0.0 | - |
0.6699 | 9000 | 0.0 | - |
0.6736 | 9050 | 0.0 | - |
0.6773 | 9100 | 0.1554 | - |
0.6811 | 9150 | 0.0002 | - |
0.6848 | 9200 | 0.037 | - |
0.6885 | 9250 | 0.0008 | - |
0.6922 | 9300 | 0.0 | - |
0.6959 | 9350 | 0.0247 | - |
0.6997 | 9400 | 0.0 | - |
0.7034 | 9450 | 0.2489 | - |
0.7071 | 9500 | 0.0266 | - |
0.7108 | 9550 | 0.0002 | - |
0.7146 | 9600 | 0.0001 | - |
0.7183 | 9650 | 0.029 | - |
0.7220 | 9700 | 0.0 | - |
0.7257 | 9750 | 0.0151 | - |
0.7294 | 9800 | 0.1482 | - |
0.7332 | 9850 | 0.023 | - |
0.7369 | 9900 | 0.0 | - |
0.7406 | 9950 | 0.0005 | - |
0.7443 | 10000 | 0.1778 | - |
0.7480 | 10050 | 0.0002 | - |
0.7518 | 10100 | 0.0002 | - |
0.7555 | 10150 | 0.0 | - |
0.7592 | 10200 | 0.0709 | - |
0.7629 | 10250 | 0.2704 | - |
0.7667 | 10300 | 0.3767 | - |
0.7704 | 10350 | 0.0 | - |
0.7741 | 10400 | 0.0177 | - |
0.7778 | 10450 | 0.0944 | - |
0.7815 | 10500 | 0.0421 | - |
0.7853 | 10550 | 0.0001 | - |
0.7890 | 10600 | 0.0001 | - |
0.7927 | 10650 | 0.0001 | - |
0.7964 | 10700 | 0.0003 | - |
0.8001 | 10750 | 0.0 | - |
0.8039 | 10800 | 0.0001 | - |
0.8076 | 10850 | 0.0366 | - |
0.8113 | 10900 | 0.0277 | - |
0.8150 | 10950 | 0.0 | - |
0.8188 | 11000 | 0.0412 | - |
0.8225 | 11050 | 0.0001 | - |
0.8262 | 11100 | 0.0003 | - |
0.8299 | 11150 | 0.0 | - |
0.8336 | 11200 | 0.0016 | - |
0.8374 | 11250 | 0.059 | - |
0.8411 | 11300 | 0.0 | - |
0.8448 | 11350 | 0.0001 | - |
0.8485 | 11400 | 0.0002 | - |
0.8523 | 11450 | 0.0001 | - |
0.8560 | 11500 | 0.0001 | - |
0.8597 | 11550 | 0.1203 | - |
0.8634 | 11600 | 0.0261 | - |
0.8671 | 11650 | 0.0002 | - |
0.8709 | 11700 | 0.245 | - |
0.8746 | 11750 | 0.0 | - |
0.8783 | 11800 | 0.0 | - |
0.8820 | 11850 | 0.0002 | - |
0.8857 | 11900 | 0.0318 | - |
0.8895 | 11950 | 0.0232 | - |
0.8932 | 12000 | 0.0 | - |
0.8969 | 12050 | 0.0 | - |
0.9006 | 12100 | 0.0264 | - |
0.9044 | 12150 | 0.025 | - |
0.9081 | 12200 | 0.0152 | - |
0.9118 | 12250 | 0.0 | - |
0.9155 | 12300 | 0.0001 | - |
0.9192 | 12350 | 0.0 | - |
0.9230 | 12400 | 0.02 | - |
0.9267 | 12450 | 0.0073 | - |
0.9304 | 12500 | 0.1577 | - |
0.9341 | 12550 | 0.0207 | - |
0.9378 | 12600 | 0.0289 | - |
0.9416 | 12650 | 0.0001 | - |
0.9453 | 12700 | 0.0778 | - |
0.9490 | 12750 | 0.0712 | - |
0.9527 | 12800 | 0.0 | - |
0.9565 | 12850 | 0.0 | - |
0.9602 | 12900 | 0.0 | - |
0.9639 | 12950 | 0.0002 | - |
0.9676 | 13000 | 0.0 | - |
0.9713 | 13050 | 0.0001 | - |
0.9751 | 13100 | 0.0 | - |
0.9788 | 13150 | 0.0 | - |
0.9825 | 13200 | 0.1664 | - |
0.9862 | 13250 | 0.0014 | - |
0.9900 | 13300 | 0.1693 | - |
0.9937 | 13350 | 0.0264 | - |
0.9974 | 13400 | 0.0027 | - |
Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- spaCy: 3.7.5
- Transformers: 4.36.2
- PyTorch: 2.1.2
- Datasets: 2.19.2
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}