detr-arrows

This model is a fine-tuned version of facebook/detr-resnet-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0051
  • Map: 0.0157
  • Map 50: 0.0235
  • Map 75: 0.017
  • Map Small: 0.0157
  • Map Medium: -1.0
  • Map Large: -1.0
  • Mar 1: 0.0854
  • Mar 10: 0.0917
  • Mar 100: 0.2917
  • Mar Small: 0.2917
  • Mar Medium: -1.0
  • Mar Large: -1.0
  • Map Left: 0.0
  • Mar 100 Left: 0.0
  • Map Right: -1.0
  • Mar 100 Right: -1.0
  • Map Up: 0.0385
  • Mar 100 Up: 0.2667
  • Map Down: 0.0146
  • Mar 100 Down: 0.8
  • Map ?: 0.0099
  • Mar 100 ?: 0.1

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Left Mar 100 Left Map Right Mar 100 Right Map Up Mar 100 Up Map Down Mar 100 Down Map ? Mar 100 ?
No log 1.0 8 2.9834 0.0001 0.0014 0.0 0.0002 -1.0 -1.0 0.0 0.0 0.025 0.025 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0006 0.1 0.0 0.0
No log 2.0 16 2.3564 0.0005 0.0023 0.0 0.0007 -1.0 -1.0 0.0 0.0 0.05 0.05 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0019 0.2 0.0 0.0
No log 3.0 24 2.1618 0.001 0.0025 0.0 0.0012 -1.0 -1.0 0.0 0.0 0.1 0.1 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.004 0.4 0.0 0.0
No log 4.0 32 2.0074 0.0005 0.0027 0.0 0.0007 -1.0 -1.0 0.0 0.0 0.05 0.05 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0022 0.2 0.0 0.0
No log 5.0 40 1.7452 0.0008 0.003 0.0 0.0009 -1.0 -1.0 0.0 0.0 0.0812 0.0812 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0028 0.3 0.0003 0.025
No log 6.0 48 1.6746 0.0009 0.0024 0.0 0.0011 -1.0 -1.0 0.0 0.0 0.1 0.1 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0038 0.4 0.0 0.0
No log 7.0 56 1.5161 0.0014 0.0023 0.0023 0.0016 -1.0 -1.0 0.0 0.0 0.15 0.15 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0054 0.6 0.0 0.0
No log 8.0 64 1.5721 0.0009 0.0017 0.0 0.001 -1.0 -1.0 0.0 0.0 0.125 0.125 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0034 0.5 0.0 0.0
No log 9.0 72 1.4536 0.0014 0.0021 0.0021 0.0021 -1.0 -1.0 0.0 0.0 0.175 0.175 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0056 0.7 0.0 0.0
No log 10.0 80 1.2638 0.0013 0.0023 0.0014 0.0019 -1.0 -1.0 0.0 0.0 0.175 0.175 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0052 0.7 0.0 0.0
No log 11.0 88 1.2646 0.0015 0.0025 0.0014 0.0025 -1.0 -1.0 0.0 0.0 0.175 0.175 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0062 0.7 0.0 0.0
No log 12.0 96 1.2239 0.0023 0.003 0.003 0.0038 -1.0 -1.0 0.0 0.0 0.2 0.2 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0092 0.8 0.0 0.0
No log 13.0 104 1.1191 0.0023 0.0057 0.0025 0.0035 -1.0 -1.0 0.0 0.0125 0.1875 0.1875 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0068 0.7 0.0026 0.05
No log 14.0 112 1.1491 0.0029 0.0054 0.002 0.0038 -1.0 -1.0 0.0312 0.0312 0.1813 0.1813 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0047 0.6 0.0068 0.125
No log 15.0 120 1.1062 0.02 0.0349 0.0297 0.0287 -1.0 -1.0 0.05 0.075 0.25 0.25 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0673 0.2 0.0053 0.7 0.0074 0.1
No log 16.0 128 1.0963 0.0705 0.0925 0.086 0.0705 -1.0 -1.0 0.0854 0.0854 0.2354 0.2354 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.2693 0.2667 0.0058 0.6 0.007 0.075
No log 17.0 136 1.0369 0.0349 0.051 0.0434 0.0349 -1.0 -1.0 0.075 0.0917 0.2917 0.2917 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.1234 0.2667 0.0049 0.8 0.0114 0.1
No log 18.0 144 1.0721 0.0324 0.05 0.0435 0.0324 -1.0 -1.0 0.0771 0.0771 0.2521 0.2521 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.1178 0.2333 0.004 0.7 0.0077 0.075
No log 19.0 152 1.0081 0.0623 0.0922 0.0858 0.0625 -1.0 -1.0 0.0646 0.0833 0.2833 0.2833 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.2356 0.2333 0.0051 0.8 0.0085 0.1
No log 20.0 160 1.0390 0.0367 0.0504 0.044 0.0367 -1.0 -1.0 0.0729 0.0854 0.2604 0.2604 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.1347 0.2667 0.0053 0.7 0.0071 0.075
No log 21.0 168 1.0262 0.0255 0.0371 0.0299 0.0255 -1.0 -1.0 0.0729 0.0854 0.2604 0.2604 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0898 0.2667 0.0052 0.7 0.0068 0.075
No log 22.0 176 0.9972 0.0134 0.0223 0.0159 0.0134 -1.0 -1.0 0.0646 0.0833 0.2833 0.2833 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0393 0.2333 0.0058 0.8 0.0086 0.1
No log 23.0 184 1.0195 0.0135 0.0204 0.014 0.0135 -1.0 -1.0 0.0729 0.0917 0.2917 0.2917 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0385 0.2667 0.0061 0.8 0.0092 0.1
No log 24.0 192 1.0240 0.0145 0.023 0.0139 0.0145 -1.0 -1.0 0.0792 0.0917 0.2917 0.2917 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0385 0.2667 0.0101 0.8 0.0095 0.1
No log 25.0 200 1.0151 0.0157 0.024 0.0176 0.0157 -1.0 -1.0 0.0854 0.0917 0.2917 0.2917 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0385 0.2667 0.0147 0.8 0.0096 0.1
No log 26.0 208 1.0143 0.0153 0.0233 0.0168 0.0153 -1.0 -1.0 0.0854 0.0917 0.2917 0.2917 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0385 0.2667 0.013 0.8 0.0099 0.1
No log 27.0 216 1.0092 0.0157 0.0235 0.017 0.0157 -1.0 -1.0 0.0854 0.0917 0.2917 0.2917 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0385 0.2667 0.0146 0.8 0.0099 0.1
No log 28.0 224 1.0051 0.0157 0.0235 0.017 0.0157 -1.0 -1.0 0.0854 0.0917 0.2917 0.2917 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0385 0.2667 0.0146 0.8 0.0099 0.1
No log 29.0 232 1.0046 0.0157 0.0235 0.017 0.0157 -1.0 -1.0 0.0854 0.0917 0.2917 0.2917 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0385 0.2667 0.0146 0.8 0.0099 0.1
No log 30.0 240 1.0051 0.0157 0.0235 0.017 0.0157 -1.0 -1.0 0.0854 0.0917 0.2917 0.2917 -1.0 -1.0 0.0 0.0 -1.0 -1.0 0.0385 0.2667 0.0146 0.8 0.0099 0.1

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
76
Safetensors
Model size
41.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for GAVLM/detr-arrows

Finetuned
(462)
this model