Update README.md
Browse files
README.md
CHANGED
@@ -79,17 +79,28 @@ The repository includes complete training and inference code. Key components:
|
|
79 |
## Example Code
|
80 |
```python
|
81 |
import os
|
82 |
-
import
|
83 |
-
import json
|
84 |
-
import random
|
85 |
-
from tqdm import tqdm
|
86 |
-
import numpy as np
|
87 |
from pathlib import Path
|
|
|
88 |
|
89 |
import torch
|
90 |
from torch import nn
|
91 |
-
from torch.utils.data import
|
92 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
from adam_atan2_pytorch import AdoptAtan2
|
94 |
|
95 |
from titans_pytorch import (
|
@@ -98,24 +109,17 @@ from titans_pytorch import (
|
|
98 |
MemoryAttention
|
99 |
)
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
import numpy as np
|
107 |
-
from tqdm import tqdm
|
108 |
-
from datasets import load_dataset
|
109 |
-
import torch
|
110 |
-
from torch.utils.data import Dataset, DataLoader
|
111 |
-
from transformers import GPT2TokenizerFast
|
112 |
|
113 |
-
#
|
114 |
-
import os
|
115 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:32'
|
116 |
|
117 |
-
|
118 |
# Константы
|
|
|
119 |
NUM_BATCHES = int(1e5)
|
120 |
BATCH_SIZE = 4
|
121 |
GRADIENT_ACCUMULATE_EVERY = 4
|
@@ -146,173 +150,59 @@ STORE_ATTN_POOL_CHUNKS = True
|
|
146 |
MEMORY_MODEL_PER_LAYER_LEARNED_LR = True
|
147 |
NEURAL_MEM_WEIGHT_RESIDUAL = True
|
148 |
|
149 |
-
# Инициализация токенизатора
|
150 |
-
tokenizer = GPT2TokenizerFast.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2')
|
151 |
-
|
152 |
-
|
153 |
-
class WikiDatasetPreprocessor:
|
154 |
-
def __init__(self, cache_dir: str = 'cache', output_dir: str = 'processed_data'):
|
155 |
-
self.cache_dir = Path(cache_dir)
|
156 |
-
self.output_dir = Path(output_dir)
|
157 |
-
self.cache_dir.mkdir(parents=True, exist_ok=True)
|
158 |
-
self.output_dir.mkdir(parents=True, exist_ok=True)
|
159 |
-
|
160 |
-
# Инициализация токенизатора
|
161 |
-
self.tokenizer = GPT2TokenizerFast.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2')
|
162 |
-
|
163 |
-
def load_wiki_dataset(self):
|
164 |
-
"""Загрузка датасета из Hugging Face"""
|
165 |
-
print("Loading Wikipedia dataset...")
|
166 |
-
dataset = load_dataset("misterkirill/ru-wikipedia", cache_dir=str(self.cache_dir))
|
167 |
-
print(f"Dataset loaded. Size: {len(dataset['train'])} articles")
|
168 |
-
return dataset
|
169 |
-
|
170 |
-
def clean_text(self, text: str) -> str:
|
171 |
-
"""Базовая очистка текста"""
|
172 |
-
# Удаляем множественные пробелы и переносы строк
|
173 |
-
text = ' '.join(text.split())
|
174 |
-
return text
|
175 |
-
|
176 |
-
# В функции process_and_save уменьшаем размер чанков
|
177 |
-
def process_wiki_article(self, text: str) -> List[str]:
|
178 |
-
"""Обработка одной статьи из википедии"""
|
179 |
-
processed_chunks = []
|
180 |
-
|
181 |
-
clean_text = self.clean_text(text)
|
182 |
-
tokens = self.tokenizer.encode(clean_text)
|
183 |
-
|
184 |
-
# Уменьшаем размер чанка
|
185 |
-
chunk_size = 256 # было 512
|
186 |
-
stride = 192 # было 384
|
187 |
-
|
188 |
-
for i in range(0, len(tokens), stride):
|
189 |
-
chunk = tokens[i:i + chunk_size]
|
190 |
-
if len(chunk) > 50: # уменьшаем минимальную длину чанка
|
191 |
-
processed_chunks.append(chunk)
|
192 |
-
|
193 |
-
return processed_chunks
|
194 |
-
|
195 |
-
def process_and_save(self, batch_size: int = 1000, test_size: float = 0.1, max_articles: int = 10000):
|
196 |
-
"""Обработка ограниченного количества статей из датасета и сохранение результатов"""
|
197 |
-
dataset = self.load_wiki_dataset()
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
print(f"Saving {len(train_chunks)} training chunks and {len(test_chunks)} test chunks...")
|
231 |
-
torch.save({
|
232 |
-
'train': train_chunks,
|
233 |
-
'test': test_chunks
|
234 |
-
}, self.output_dir / 'processed_wiki.pt')
|
235 |
|
236 |
|
237 |
-
class
|
238 |
-
|
239 |
-
|
240 |
-
self.seq_len = seq_len
|
241 |
|
242 |
-
def
|
243 |
-
|
244 |
-
|
245 |
-
def __getitem__(self, idx):
|
246 |
-
chunk = self.chunks[idx]
|
247 |
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
else:
|
253 |
-
chunk = chunk[:self.seq_len + 1]
|
254 |
-
|
255 |
-
return torch.tensor(chunk, device='cuda').long() # Добавляем device='cuda'
|
256 |
-
|
257 |
-
def create_dataloaders(
|
258 |
-
processed_data_path: str,
|
259 |
-
batch_size: int = 4,
|
260 |
-
seq_len: int = 512,
|
261 |
-
train_test_split: float = 0.9
|
262 |
-
) -> tuple:
|
263 |
-
"""Создание загрузчиков данных для обучения и валидации"""
|
264 |
-
|
265 |
-
print(f"Loading processed data from {processed_data_path}")
|
266 |
-
data = torch.load(processed_data_path)
|
267 |
-
train_chunks = data['train']
|
268 |
-
test_chunks = data['test']
|
269 |
-
|
270 |
-
# Создание датасетов
|
271 |
-
train_dataset = WikiTextDataset(train_chunks, seq_len)
|
272 |
-
test_dataset = WikiTextDataset(test_chunks, seq_len)
|
273 |
-
|
274 |
-
print(f"Created datasets with {len(train_dataset)} training and {len(test_dataset)} test samples")
|
275 |
-
|
276 |
-
# Создание загрузчиков данных
|
277 |
-
train_loader = DataLoader(
|
278 |
-
train_dataset,
|
279 |
-
batch_size=batch_size,
|
280 |
-
shuffle=True,
|
281 |
-
num_workers=0, # Убираем многопоточность для отладки
|
282 |
-
pin_memory=False # Отключаем pin_memory, так как данные уже на GPU
|
283 |
-
)
|
284 |
-
|
285 |
-
val_loader = DataLoader(
|
286 |
-
test_dataset,
|
287 |
-
batch_size=batch_size,
|
288 |
-
shuffle=False,
|
289 |
-
num_workers=0, # Убираем многопоточность для отладки
|
290 |
-
pin_memory=False # Отключаем pin_memory, так как данные уже на GPU
|
291 |
-
)
|
292 |
-
|
293 |
-
return train_loader, val_loader
|
294 |
-
|
295 |
-
def cycle(loader):
|
296 |
-
"""Бесконечный итератор по загрузчику данных"""
|
297 |
-
while True:
|
298 |
-
for data in loader:
|
299 |
-
yield data
|
300 |
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
num_tokens=len(tokenizer),
|
310 |
-
dim=384,
|
311 |
-
depth=8,
|
312 |
-
segment_len=WINDOW_SIZE,
|
313 |
-
num_persist_mem_tokens=NUM_PERSIST_MEM,
|
314 |
-
num_longterm_mem_tokens=NUM_LONGTERM_MEM,
|
315 |
-
neural_memory_layers=NEURAL_MEM_LAYERS,
|
316 |
neural_memory_segment_len=NEURAL_MEM_SEGMENT_LEN,
|
317 |
neural_memory_batch_size=NEURAL_MEM_BATCH_SIZE,
|
318 |
neural_mem_gate_attn_output=NEURAL_MEM_GATE_ATTN_OUTPUT,
|
@@ -331,139 +221,107 @@ def create_model():
|
|
331 |
use_accelerated_scan=True,
|
332 |
per_parameter_lr_modulation=MEMORY_MODEL_PER_LAYER_LEARNED_LR
|
333 |
)
|
334 |
-
)
|
335 |
|
336 |
-
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
-
|
342 |
-
|
343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
351 |
-
|
352 |
-
|
353 |
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
optim.zero_grad()
|
371 |
-
|
372 |
-
# Очищаем кэш CUDA каждые 100 итераций
|
373 |
-
if i % 100 == 0:
|
374 |
-
torch.cuda.empty_cache()
|
375 |
-
|
376 |
-
avg_loss = total_loss
|
377 |
-
running_loss = 0.9 * running_loss + 0.1 * avg_loss if i > 0 else avg_loss
|
378 |
-
|
379 |
-
pbar.set_postfix({
|
380 |
-
'loss': f'{running_loss:.4f}',
|
381 |
-
'batch_loss': f'{avg_loss:.4f}'
|
382 |
-
})
|
383 |
-
|
384 |
-
# Валидация
|
385 |
-
if i % 100 == 0:
|
386 |
-
model.eval()
|
387 |
-
with torch.no_grad():
|
388 |
-
val_batch = next(val_loader)
|
389 |
-
val_loss = model(val_batch, return_loss=True)
|
390 |
-
pbar.set_postfix({
|
391 |
-
'train_loss': f'{running_loss:.4f}',
|
392 |
-
'val_loss': f'{val_loss.item():.4f}'
|
393 |
-
})
|
394 |
-
|
395 |
-
# Сохранение че��пойнта
|
396 |
-
if i % 1000 == 0 and i > 0:
|
397 |
-
torch.save({
|
398 |
-
'epoch': i,
|
399 |
-
'model_state_dict': model.state_dict(),
|
400 |
-
'optimizer_state_dict': optim.state_dict(),
|
401 |
-
'loss': running_loss,
|
402 |
-
}, f'checkpoint_{i}.pt')
|
403 |
-
|
404 |
-
except KeyboardInterrupt:
|
405 |
-
print("\nTraining interrupted by user")
|
406 |
-
except Exception as e:
|
407 |
-
print(f"\nTraining stopped due to error: {e}")
|
408 |
-
raise e
|
409 |
-
|
410 |
-
return model
|
411 |
-
|
412 |
-
def main():
|
413 |
-
try:
|
414 |
-
if not torch.cuda.is_available():
|
415 |
-
raise RuntimeError("CUDA is not available. This code requires GPU.")
|
416 |
-
|
417 |
-
print(f"Using CUDA device: {torch.cuda.get_device_name(0)}")
|
418 |
-
|
419 |
-
# Параметры
|
420 |
-
BATCH_SIZE = 4
|
421 |
-
SEQ_LEN = 512
|
422 |
-
CACHE_DIR = 'cache'
|
423 |
-
PROCESSED_DATA_DIR = 'processed_data'
|
424 |
-
NUM_BATCHES = 10000 # уменьшаем количество итераций
|
425 |
-
|
426 |
-
# Подготовка данных
|
427 |
-
preprocessor = WikiDatasetPreprocessor(CACHE_DIR, PROCESSED_DATA_DIR)
|
428 |
-
|
429 |
-
processed_data_path = Path(PROCESSED_DATA_DIR) / 'processed_wiki.pt'
|
430 |
-
if not processed_data_path.exists():
|
431 |
-
print("Processing Wikipedia dataset...")
|
432 |
-
preprocessor.process_and_save(max_articles=10000) # ограничиваем количество статей
|
433 |
-
|
434 |
-
# Создание загрузчиков данных
|
435 |
-
train_loader, val_loader = create_dataloaders(
|
436 |
-
processed_data_path,
|
437 |
-
batch_size=BATCH_SIZE,
|
438 |
-
seq_len=SEQ_LEN
|
439 |
)
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
val_loader = cycle(val_loader)
|
444 |
-
|
445 |
-
# Создание и обучение модели
|
446 |
-
model = create_model()
|
447 |
-
model = train_model(model, train_loader, val_loader, num_batches=NUM_BATCHES)
|
448 |
-
|
449 |
-
# Сохранение финальной модели
|
450 |
-
torch.save(model.state_dict(), 'final_model.pt')
|
451 |
-
|
452 |
-
return model, train_loader, val_loader
|
453 |
-
|
454 |
-
except Exception as e:
|
455 |
-
print(f"Error in main: {e}")
|
456 |
-
raise e
|
457 |
|
458 |
if __name__ == "__main__":
|
459 |
-
# Установка seed для воспроизводимости
|
460 |
torch.manual_seed(42)
|
461 |
torch.cuda.manual_seed_all(42)
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
|
|
|
|
|
|
|
|
467 |
```
|
468 |
|
469 |
# Training
|
|
|
79 |
## Example Code
|
80 |
```python
|
81 |
import os
|
82 |
+
import warnings
|
|
|
|
|
|
|
|
|
83 |
from pathlib import Path
|
84 |
+
from typing import List, Dict, Optional, Tuple
|
85 |
|
86 |
import torch
|
87 |
from torch import nn
|
88 |
+
from torch.utils.data import Dataset, DataLoader
|
89 |
+
from transformers import (
|
90 |
+
GPT2TokenizerFast,
|
91 |
+
PreTrainedModel,
|
92 |
+
PreTrainedTokenizer,
|
93 |
+
AutoConfig,
|
94 |
+
AutoModelForCausalLM,
|
95 |
+
AutoTokenizer,
|
96 |
+
PretrainedConfig,
|
97 |
+
GenerationMixin,
|
98 |
+
pipeline
|
99 |
+
)
|
100 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
101 |
+
from huggingface_hub import HfApi, login
|
102 |
+
from datasets import load_dataset
|
103 |
+
from tqdm import tqdm
|
104 |
from adam_atan2_pytorch import AdoptAtan2
|
105 |
|
106 |
from titans_pytorch import (
|
|
|
109 |
MemoryAttention
|
110 |
)
|
111 |
|
112 |
+
# Отключаем предупреждения
|
113 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
114 |
+
torch._dynamo.config.suppress_errors = True
|
115 |
+
torch._dynamo.config.cache_size_limit = 100000
|
116 |
+
torch._dynamo.config.disable = True
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
# Настройки CUDA
|
|
|
119 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:32'
|
120 |
|
|
|
121 |
# Константы
|
122 |
+
repo_id = 'Grpp/memory-transformer-ru'
|
123 |
NUM_BATCHES = int(1e5)
|
124 |
BATCH_SIZE = 4
|
125 |
GRADIENT_ACCUMULATE_EVERY = 4
|
|
|
150 |
MEMORY_MODEL_PER_LAYER_LEARNED_LR = True
|
151 |
NEURAL_MEM_WEIGHT_RESIDUAL = True
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
class MemoryTransformerConfig(PretrainedConfig):
|
155 |
+
model_type = "memory_transformer"
|
156 |
+
|
157 |
+
def __init__(
|
158 |
+
self,
|
159 |
+
vocab_size=50257,
|
160 |
+
dim=384,
|
161 |
+
depth=8,
|
162 |
+
segment_len=32,
|
163 |
+
num_persist_mem=4,
|
164 |
+
num_longterm_mem=4,
|
165 |
+
neural_mem_layers=(2, 4, 6),
|
166 |
+
pad_token_id=0,
|
167 |
+
bos_token_id=1,
|
168 |
+
eos_token_id=2,
|
169 |
+
**kwargs
|
170 |
+
):
|
171 |
+
self.vocab_size = vocab_size
|
172 |
+
self.dim = dim
|
173 |
+
self.depth = depth
|
174 |
+
self.segment_len = segment_len
|
175 |
+
self.num_persist_mem = num_persist_mem
|
176 |
+
self.num_longterm_mem = num_longterm_mem
|
177 |
+
self.neural_mem_layers = neural_mem_layers
|
178 |
+
super().__init__(
|
179 |
+
pad_token_id=pad_token_id,
|
180 |
+
bos_token_id=bos_token_id,
|
181 |
+
eos_token_id=eos_token_id,
|
182 |
+
**kwargs
|
183 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
|
186 |
+
class MemoryTransformerForCausalLM(PreTrainedModel, GenerationMixin):
|
187 |
+
config_class = MemoryTransformerConfig
|
188 |
+
supports_gradient_checkpointing = True
|
|
|
189 |
|
190 |
+
def __init__(self, config):
|
191 |
+
super().__init__(config)
|
|
|
|
|
|
|
192 |
|
193 |
+
neural_memory_model = (
|
194 |
+
MemoryAttention(dim=64) if USE_MEM_ATTENTION_MODEL
|
195 |
+
else MemoryMLP(dim=64, depth=NEURAL_MEMORY_DEPTH)
|
196 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
self.transformer = MemoryAsContextTransformer(
|
199 |
+
num_tokens=config.vocab_size,
|
200 |
+
dim=config.dim,
|
201 |
+
depth=config.depth,
|
202 |
+
segment_len=config.segment_len,
|
203 |
+
num_persist_mem_tokens=config.num_persist_mem,
|
204 |
+
num_longterm_mem_tokens=config.num_longterm_mem,
|
205 |
+
neural_memory_layers=config.neural_mem_layers,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
neural_memory_segment_len=NEURAL_MEM_SEGMENT_LEN,
|
207 |
neural_memory_batch_size=NEURAL_MEM_BATCH_SIZE,
|
208 |
neural_mem_gate_attn_output=NEURAL_MEM_GATE_ATTN_OUTPUT,
|
|
|
221 |
use_accelerated_scan=True,
|
222 |
per_parameter_lr_modulation=MEMORY_MODEL_PER_LAYER_LEARNED_LR
|
223 |
)
|
224 |
+
)
|
225 |
|
226 |
+
def forward(
|
227 |
+
self,
|
228 |
+
input_ids: Optional[torch.LongTensor] = None,
|
229 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
230 |
+
labels: Optional[torch.LongTensor] = None,
|
231 |
+
return_dict: Optional[bool] = None,
|
232 |
+
**kwargs
|
233 |
+
):
|
234 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
235 |
+
outputs = self.transformer(input_ids)
|
236 |
|
237 |
+
if labels is not None:
|
238 |
+
loss = self.transformer(input_ids, return_loss=True)
|
239 |
+
return CausalLMOutputWithCrossAttentions(
|
240 |
+
loss=loss,
|
241 |
+
logits=outputs,
|
242 |
+
past_key_values=None,
|
243 |
+
hidden_states=None,
|
244 |
+
attentions=None,
|
245 |
+
cross_attentions=None
|
246 |
+
)
|
247 |
+
|
248 |
+
return CausalLMOutputWithCrossAttentions(
|
249 |
+
loss=None,
|
250 |
+
logits=outputs,
|
251 |
+
past_key_values=None,
|
252 |
+
hidden_states=None,
|
253 |
+
attentions=None,
|
254 |
+
cross_attentions=None
|
255 |
+
)
|
256 |
|
257 |
+
def prepare_inputs_for_generation(
|
258 |
+
self,
|
259 |
+
input_ids,
|
260 |
+
past=None,
|
261 |
+
attention_mask=None,
|
262 |
+
**kwargs
|
263 |
+
):
|
264 |
+
if past:
|
265 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
266 |
+
|
267 |
+
return {
|
268 |
+
"input_ids": input_ids,
|
269 |
+
"past_key_values": past,
|
270 |
+
"attention_mask": attention_mask,
|
271 |
+
}
|
272 |
+
|
273 |
+
@property
|
274 |
+
def device(self):
|
275 |
+
return next(self.parameters()).device
|
276 |
|
277 |
+
|
278 |
+
def setup_custom_model():
|
279 |
+
"""Регистрация кастомной модели"""
|
280 |
+
AutoConfig.register("memory_transformer", MemoryTransformerConfig)
|
281 |
+
AutoModelForCausalLM.register(MemoryTransformerConfig, MemoryTransformerForCausalLM)
|
282 |
+
|
283 |
+
|
284 |
+
def generate_example(model, tokenizer, text, max_length=100):
|
285 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
286 |
+
model = model.to(device)
|
287 |
+
model.eval()
|
288 |
|
289 |
+
input_ids = tokenizer.encode(text, return_tensors="pt").to(device)
|
290 |
+
attention_mask = torch.ones_like(input_ids, device=device)
|
291 |
|
292 |
+
print(f"Model device: {next(model.parameters()).device}")
|
293 |
+
print(f"Input device: {input_ids.device}")
|
294 |
+
|
295 |
+
with torch.no_grad():
|
296 |
+
outputs = model.generate(
|
297 |
+
input_ids=input_ids,
|
298 |
+
attention_mask=attention_mask,
|
299 |
+
max_length=max_length,
|
300 |
+
num_return_sequences=1,
|
301 |
+
no_repeat_ngram_size=2,
|
302 |
+
do_sample=True,
|
303 |
+
top_k=50,
|
304 |
+
top_p=0.95,
|
305 |
+
temperature=0.7,
|
306 |
+
pad_token_id=tokenizer.pad_token_id,
|
307 |
+
eos_token_id=tokenizer.eos_token_id,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
)
|
309 |
+
|
310 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
311 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
if __name__ == "__main__":
|
|
|
314 |
torch.manual_seed(42)
|
315 |
torch.cuda.manual_seed_all(42)
|
316 |
+
|
317 |
+
setup_custom_model()
|
318 |
+
config = AutoConfig.from_pretrained(repo_id)
|
319 |
+
model = AutoModelForCausalLM.from_pretrained(repo_id)
|
320 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
321 |
+
|
322 |
+
test_text = "Московский кремль является"
|
323 |
+
generated_text = generate_example(model, tokenizer, test_text)
|
324 |
+
print(generated_text)
|
325 |
```
|
326 |
|
327 |
# Training
|