Update README.md
Browse files
README.md
CHANGED
@@ -324,6 +324,202 @@ if __name__ == "__main__":
|
|
324 |
print(generated_text)
|
325 |
```
|
326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
# Training
|
328 |
|
329 |
The model was trained on a cleaned subset of Russian Wikipedia articles using the following parameters:
|
|
|
324 |
print(generated_text)
|
325 |
```
|
326 |
|
327 |
+
|
328 |
+
## Finetine Code
|
329 |
+
|
330 |
+
```python
|
331 |
+
import os
|
332 |
+
import torch
|
333 |
+
from pathlib import Path
|
334 |
+
from torch.utils.data import DataLoader
|
335 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
336 |
+
from tqdm import tqdm
|
337 |
+
from adam_atan2_pytorch import AdoptAtan2
|
338 |
+
|
339 |
+
# Импортируем классы из кода обучения
|
340 |
+
from run_train_pep8 import (
|
341 |
+
WikiDatasetPreprocessor,
|
342 |
+
WikiTextDataset,
|
343 |
+
create_dataloaders,
|
344 |
+
cycle
|
345 |
+
) # From Train Code
|
346 |
+
|
347 |
+
from test_load import setup_custom_model # From Example Code
|
348 |
+
|
349 |
+
# Настройки CUDA
|
350 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:32'
|
351 |
+
|
352 |
+
# Константы для файнтьюнинга
|
353 |
+
BATCH_SIZE = 2
|
354 |
+
GRADIENT_ACCUMULATE_EVERY = 2
|
355 |
+
LEARNING_RATE = 1e-5
|
356 |
+
NUM_EPOCHS = 3
|
357 |
+
STEPS_PER_EPOCH = 1000 # Количество шагов на эпоху
|
358 |
+
SEQ_LEN = 256
|
359 |
+
PROCESSED_DATA_DIR = 'processed_data'
|
360 |
+
CACHE_DIR = 'cache'
|
361 |
+
REPO_ID = 'Grpp/memory-transformer-ru'
|
362 |
+
|
363 |
+
def finetune_model(
|
364 |
+
model,
|
365 |
+
train_loader,
|
366 |
+
val_loader,
|
367 |
+
num_epochs,
|
368 |
+
device,
|
369 |
+
save_path='finetuned_model'
|
370 |
+
):
|
371 |
+
"""Файнтьюнинг модели."""
|
372 |
+
|
373 |
+
model = model.to(device)
|
374 |
+
optimizer = AdoptAtan2(model.parameters(), lr=LEARNING_RATE)
|
375 |
+
|
376 |
+
best_val_loss = float('inf')
|
377 |
+
|
378 |
+
for epoch in range(num_epochs):
|
379 |
+
model.train()
|
380 |
+
total_train_loss = 0
|
381 |
+
train_steps = 0
|
382 |
+
|
383 |
+
# Прогресс-бар для фиксированного количества шагов
|
384 |
+
train_pbar = tqdm(range(STEPS_PER_EPOCH),
|
385 |
+
desc=f'Epoch {epoch+1}/{num_epochs} [Train]')
|
386 |
+
|
387 |
+
for step in train_pbar:
|
388 |
+
total_loss = 0
|
389 |
+
|
390 |
+
# Градиентное накопление
|
391 |
+
for _ in range(GRADIENT_ACCUMULATE_EVERY):
|
392 |
+
batch = next(train_loader)
|
393 |
+
batch = batch.to(device)
|
394 |
+
|
395 |
+
# Получаем входные данные и метки
|
396 |
+
inputs = batch[:, :-1]
|
397 |
+
labels = batch[:, 1:]
|
398 |
+
|
399 |
+
# Прямой проход
|
400 |
+
outputs = model(input_ids=inputs, labels=labels)
|
401 |
+
loss = outputs.loss / GRADIENT_ACCUMULATE_EVERY
|
402 |
+
|
403 |
+
# Обратное распространение
|
404 |
+
loss.backward()
|
405 |
+
total_loss += loss.item()
|
406 |
+
|
407 |
+
# Обновление параметров
|
408 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
409 |
+
optimizer.step()
|
410 |
+
optimizer.zero_grad()
|
411 |
+
|
412 |
+
total_train_loss += total_loss
|
413 |
+
train_steps += 1
|
414 |
+
|
415 |
+
# Обновление прогресс-бара
|
416 |
+
train_pbar.set_postfix({
|
417 |
+
'loss': f'{total_loss:.4f}',
|
418 |
+
'avg_loss': f'{total_train_loss/train_steps:.4f}'
|
419 |
+
})
|
420 |
+
|
421 |
+
# Валидация каждые 100 шагов
|
422 |
+
if step % 100 == 0:
|
423 |
+
model.eval()
|
424 |
+
val_loss = 0
|
425 |
+
val_steps = 0
|
426 |
+
|
427 |
+
with torch.no_grad():
|
428 |
+
for _ in range(10): # Ограничиваем количество валидационных шагов
|
429 |
+
val_batch = next(val_loader)
|
430 |
+
val_batch = val_batch.to(device)
|
431 |
+
|
432 |
+
val_inputs = val_batch[:, :-1]
|
433 |
+
val_labels = val_batch[:, 1:]
|
434 |
+
|
435 |
+
val_outputs = model(input_ids=val_inputs, labels=val_labels)
|
436 |
+
val_loss += val_outputs.loss.item()
|
437 |
+
val_steps += 1
|
438 |
+
|
439 |
+
avg_val_loss = val_loss / val_steps
|
440 |
+
|
441 |
+
print(f"\nValidation loss: {avg_val_loss:.4f}")
|
442 |
+
|
443 |
+
# Сохраняем лучшую модель
|
444 |
+
if avg_val_loss < best_val_loss:
|
445 |
+
best_val_loss = avg_val_loss
|
446 |
+
torch.save({
|
447 |
+
'epoch': epoch,
|
448 |
+
'model_state_dict': model.state_dict(),
|
449 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
450 |
+
'loss': best_val_loss,
|
451 |
+
}, f'{save_path}_best.pt')
|
452 |
+
|
453 |
+
model.train()
|
454 |
+
|
455 |
+
# Сохраняем чекпойнт после каждой эпохи
|
456 |
+
torch.save({
|
457 |
+
'epoch': epoch,
|
458 |
+
'model_state_dict': model.state_dict(),
|
459 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
460 |
+
'loss': total_train_loss / train_steps,
|
461 |
+
}, f'{save_path}_epoch_{epoch}.pt')
|
462 |
+
|
463 |
+
print(f"\nEpoch {epoch+1} completed. Average loss: {total_train_loss/train_steps:.4f}")
|
464 |
+
|
465 |
+
return model
|
466 |
+
|
467 |
+
def main():
|
468 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
469 |
+
print(f"Using device: {device}")
|
470 |
+
|
471 |
+
# Загружаем и подготавливаем данные
|
472 |
+
processed_data_path = Path(PROCESSED_DATA_DIR) / 'processed_wiki.pt'
|
473 |
+
|
474 |
+
if not processed_data_path.exists():
|
475 |
+
print("Processing dataset...")
|
476 |
+
preprocessor = WikiDatasetPreprocessor(CACHE_DIR, PROCESSED_DATA_DIR)
|
477 |
+
preprocessor.process_and_save(max_articles=10000)
|
478 |
+
|
479 |
+
print("Creating dataloaders...")
|
480 |
+
train_loader, val_loader = create_dataloaders(
|
481 |
+
processed_data_path,
|
482 |
+
batch_size=BATCH_SIZE,
|
483 |
+
seq_len=SEQ_LEN
|
484 |
+
)
|
485 |
+
|
486 |
+
train_loader = cycle(train_loader)
|
487 |
+
val_loader = cycle(val_loader)
|
488 |
+
|
489 |
+
# Загружаем предобученную модель
|
490 |
+
print("Loading pretrained model...")
|
491 |
+
setup_custom_model()
|
492 |
+
config = AutoConfig.from_pretrained(REPO_ID)
|
493 |
+
model = AutoModelForCausalLM.from_pretrained(REPO_ID)
|
494 |
+
|
495 |
+
print("Starting finetuning...")
|
496 |
+
# Файнтьюним модель
|
497 |
+
model = finetune_model(
|
498 |
+
model,
|
499 |
+
train_loader,
|
500 |
+
val_loader,
|
501 |
+
NUM_EPOCHS,
|
502 |
+
device
|
503 |
+
)
|
504 |
+
|
505 |
+
# Сохраняем финальную версию модели
|
506 |
+
print("Saving final model...")
|
507 |
+
model.save_pretrained('final_finetuned_model')
|
508 |
+
|
509 |
+
return model
|
510 |
+
|
511 |
+
if __name__ == "__main__":
|
512 |
+
torch.manual_seed(42)
|
513 |
+
torch.cuda.manual_seed_all(42)
|
514 |
+
torch.backends.cudnn.benchmark = True
|
515 |
+
|
516 |
+
try:
|
517 |
+
model = main()
|
518 |
+
print("Finetuning completed successfully!")
|
519 |
+
except Exception as e:
|
520 |
+
print(f"An error occurred: {str(e)}")
|
521 |
+
```
|
522 |
+
|
523 |
# Training
|
524 |
|
525 |
The model was trained on a cleaned subset of Russian Wikipedia articles using the following parameters:
|