Gummybear05's picture
End of training
8ac5122 verified
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-1b-E50_freq_speed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-1b-E50_freq_speed
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5279
- Cer: 15.9833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 27.5942 | 0.2580 | 200 | 15.1915 | 93.3799 |
| 4.8195 | 0.5160 | 400 | 5.0466 | 93.8381 |
| 4.6163 | 0.7741 | 600 | 4.6972 | 93.6149 |
| 4.4212 | 1.0321 | 800 | 4.1616 | 89.2270 |
| 3.6842 | 1.2901 | 1000 | 2.4339 | 49.4596 |
| 1.7035 | 1.5481 | 1200 | 1.3759 | 31.8550 |
| 1.1079 | 1.8062 | 1400 | 1.1419 | 29.9460 |
| 0.8743 | 2.0642 | 1600 | 1.0240 | 27.7256 |
| 0.6885 | 2.3222 | 1800 | 0.9708 | 28.9356 |
| 0.6163 | 2.5802 | 2000 | 0.8797 | 27.3555 |
| 0.5719 | 2.8383 | 2200 | 0.7727 | 24.1835 |
| 0.4769 | 3.0963 | 2400 | 0.7156 | 23.4962 |
| 0.384 | 3.3543 | 2600 | 0.6899 | 20.6180 |
| 0.3428 | 3.6123 | 2800 | 0.6663 | 21.0291 |
| 0.3288 | 3.8703 | 3000 | 0.5853 | 20.8353 |
| 0.2779 | 4.1284 | 3200 | 0.5770 | 18.0980 |
| 0.23 | 4.3864 | 3400 | 0.5491 | 16.7058 |
| 0.2244 | 4.6444 | 3600 | 0.5386 | 16.0538 |
| 0.2006 | 4.9024 | 3800 | 0.5279 | 15.9833 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.3.1.post100
- Datasets 2.19.1
- Tokenizers 0.20.1