File size: 22,114 Bytes
e137031
 
 
 
 
 
 
 
 
50bb180
c70df6e
e137031
caf33fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e137031
caf33fd
 
 
 
 
 
 
 
 
 
 
e137031
caf33fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e137031
caf33fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e137031
caf33fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e137031
caf33fd
 
 
e137031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caf33fd
 
 
e137031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50bb180
caf33fd
e137031
caf33fd
 
 
 
e137031
caf33fd
 
 
 
 
c70df6e
 
 
 
 
 
 
 
 
 
 
 
 
 
caf33fd
c70df6e
caf33fd
 
 
 
c70df6e
caf33fd
 
 
 
 
c70df6e
e137031
 
 
 
 
 
 
 
 
 
 
caf33fd
 
 
c70df6e
e137031
c70df6e
50bb180
e137031
 
c70df6e
e137031
 
 
 
 
 
 
 
 
caf33fd
 
e137031
 
caf33fd
e137031
 
 
c70df6e
e137031
 
 
 
 
 
c70df6e
e137031
50bb180
e137031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70df6e
e137031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70df6e
 
caf33fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e137031
 
 
 
c70df6e
50bb180
c70df6e
 
 
e137031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70df6e
 
 
 
 
 
 
 
 
 
 
 
e137031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
---
base_model: BAAI/bge-large-en-v1.5
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2442
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'Construct:  Identify the order of rotational symmetry of a shape.


    Question:  Which shape has the lowest order of rotational symmetry?


    Options:

    A. Equilateral triangle

    B. Circle

    C. Square

    D. Trapezium


    Correct Answer: Trapezium


    Incorrect Answer: Circle'
  sentences:
  - When multiplying decimals, divides by the wrong power of 10 when reinserting the
    decimal
  - Does not understand inequality notation
  - Does not know how to find order of rotational symmetry
- source_sentence: "Construct:  Solve three or more step linear equations, with the\
    \ variable on one side, involving negative integers.\n\nQuestion:  Tom and Katie\
    \ are discussing how to solve:\n(5 x / 3)-1=-2\n\nTom says a correct next line\
    \ of working could be:  5 x-3=-6 \n\nKatie says a correct next line of working\
    \ could be:  (5 x / 3)=-3 \n\nWho is correct?\n\nOptions:\nA. Only Tom\nB. Only\
    \ Katie\nC. Both Tom and Katie\nD. Neither is correct\n\nCorrect Answer: Only\
    \ Tom\n\nIncorrect Answer: Neither is correct"
  sentences:
  - Mixes up the value of two terms when substituting
  - Thinks there are 100 ml in a litre
  - Does not understand that when multiplying both sides of an equation by an amount
    every term must be multiplied by the same amount
- source_sentence: 'Construct:  Identify corresponding angles.


    Question:  M  and  N  are the intersections of the line  X Y  with the lines  P
    Q  and  R S .

    Which angle is corresponding to angle QMY? A pair of parallel lines pointing up
    to the left. PQ and RS are the ends of the parallel lines. PQ is on the left of
    the diagram with Q being the top left.

    A red straight line, XY, crosses the parallel lines. X is on the left of the diagram.

    Line XY crosses line PQ at a point marked M.

    Line XY crosses line RS at a point marked N.

    The angle QMY is marked in red.


    Options:

    A. XMP

    B. SNY

    C. SNX

    D. XNR


    Correct Answer: SNY


    Incorrect Answer: XNR'
  sentences:
  - Confuses corresponding and alternate angles
  - Estimates shares of a ratio instead of calculating
  - Misremembers the quadratic formula
- source_sentence: 'Construct:  Factorise a quadratic expression in the form x² -
    c.


    Question:  Factorise this expression, if possible:

    (

    p^2-4

    ).


    Options:

    A. (p-2)(p+2)

    B. p(p-2)

    C. (p-2)(p-2)

    D. Does not

    factorise


    Correct Answer: (p-2)(p+2)


    Incorrect Answer: p(p-2)'
  sentences:
  - Mixes up greater than and less than symbols
  - Does not know how to find the length of a line segment from coordinates
  - Does not recognise difference of two squares
- source_sentence: 'Construct:  Solve quadratic equations using the quadratic formula
    where the coefficient of x² is not 1.


    Question:  Vera wants to solve this equation using the quadratic formula.

    (

    3 h^2-10 h+4=0

    )


    What should replace the circle?  (? pm square root of (?-?) / bigcirc).


    Options:

    A. 3

    B. 5

    C. 9

    D. 6


    Correct Answer: 6


    Incorrect Answer: 3'
  sentences:
  - Misremembers the quadratic formula
  - When asked for a specific term in a sequence gives the term after
  - Does not know that vertically opposite angles are equal
---

# SentenceTransformer based on BAAI/bge-large-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the csv dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - csv
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Gurveer05/bge-large-eedi-2024")
# Run inference
sentences = [
    'Construct:  Solve quadratic equations using the quadratic formula where the coefficient of x² is not 1.\n\nQuestion:  Vera wants to solve this equation using the quadratic formula.\n(\n3 h^2-10 h+4=0\n)\n\nWhat should replace the circle?  (? pm square root of (?-?) / bigcirc).\n\nOptions:\nA. 3\nB. 5\nC. 9\nD. 6\n\nCorrect Answer: 6\n\nIncorrect Answer: 3',
    'Misremembers the quadratic formula',
    'Does not know that vertically opposite angles are equal',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### csv

* Dataset: csv
* Size: 2,442 training samples
* Columns: <code>qa_pair_text</code> and <code>MisconceptionName</code>
* Approximate statistics based on the first 1000 samples:
  |         | qa_pair_text                                                                         | MisconceptionName                                                                 |
  |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                               | string                                                                            |
  | details | <ul><li>min: 40 tokens</li><li>mean: 102.66 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 15.26 tokens</li><li>max: 39 tokens</li></ul> |
* Samples:
  | qa_pair_text                                                                                                                                                                                                                                                                                                                                                         | MisconceptionName                                                            |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|
  | <code>Construct:  Convert between cm³ and mm³.<br><br>Question:  1 cm^3  is the same as _______  mm^3.<br><br>Options:<br>A. 10<br>B. 100<br>C. 1000<br>D. 10000<br><br>Correct Answer: 1000<br><br>Incorrect Answer: 10</code>                                                                                                                                      | <code>Does not cube the conversion factor when converting cubed units</code> |
  | <code>Construct:  Write algebraic expressions with correct algebraic convention.<br><br>Question:  Which answer shows the following calculation using the correct algebraic convention?<br>(<br>y x x+b x 3<br>).<br><br>Options:<br>A. y x+b 3<br>B. x y+3 b<br>C. y+3 b x<br>D. 3 b x y<br><br>Correct Answer: x y+3 b<br><br>Incorrect Answer: 3 b x y</code>     | <code>Multiplies all terms together when simplifying an expression</code>    |
  | <code>Construct:  Write algebraic expressions with correct algebraic convention.<br><br>Question:  Which of the following is the correct way of writing:  p  divided by  q , then add  3  using algebraic convention?<br><br>Options:<br>A. p q+3<br>B. (p / q)+3<br>C. (p / q+3)<br>D. p-q+3<br><br>Correct Answer: (p / q)+3<br><br>Incorrect Answer: p-q+3</code> | <code>Has used a subtraction sign to represent division</code>               |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### csv

* Dataset: csv
* Size: 1,928 evaluation samples
* Columns: <code>qa_pair_text</code> and <code>MisconceptionName</code>
* Approximate statistics based on the first 1000 samples:
  |         | qa_pair_text                                                                         | MisconceptionName                                                                 |
  |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                               | string                                                                            |
  | details | <ul><li>min: 40 tokens</li><li>mean: 103.34 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.34 tokens</li><li>max: 40 tokens</li></ul> |
* Samples:
  | qa_pair_text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MisconceptionName                                                                      |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
  | <code>Construct:  Multiply two decimals together with the same number of decimal places.<br><br>Question:  0.4^2=.<br><br>Options:<br>A. 0.08<br>B. 0.8<br>C. 1.6<br>D. 0.16<br><br>Correct Answer: 0.16<br><br>Incorrect Answer: 0.8</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <code>Mixes up squaring and multiplying by 2 or doubling</code>                        |
  | <code>Construct:  Calculate the cube root of a number.<br><br>Question:  3rd root of (8)=.<br><br>Options:<br>A. 2 . dot{6}<br>B. 4<br>C. 64<br>D. 2<br><br>Correct Answer: 2<br><br>Incorrect Answer: 4</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <code>Halves when asked to find the cube root</code>                                   |
  | <code>Construct:  Calculate missing lengths of shapes by geometrical inference, where the lengths given are in the same units.<br><br>Question:  What is the area of the shaded section of this composite shape made from rectangles? A composite shape made from two rectangles that form an "L" shape.  The base of the shape is horizontal and is 13cm long. The vertical height of the whole shape is 14cm. The horizontal width of the top part of the shape is 6cm. The vertical height of the top rectangle is 8cm. The right handed rectangle is shaded blue.<br><br>Options:<br>A. 48 cm^2<br>B. 104 cm^2<br>C. 42 cm^2<br>D. 56 cm^2<br><br>Correct Answer: 42 cm^2<br><br>Incorrect Answer: 48 cm^2</code> | <code>Uses an incorrect side length when splitting a composite shape into parts</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 32
- `weight_decay`: 0.01
- `num_train_epochs`: 20
- `lr_scheduler_type`: cosine_with_restarts
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `gradient_checkpointing`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 32
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 20
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_restarts
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: True
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | loss       |
|:----------:|:------:|:-------------:|:----------:|
| 0.4183     | 2      | 1.2854        | -          |
| 0.6275     | 3      | -             | 1.0368     |
| 0.8366     | 4      | 1.0855        | -          |
| 1.2549     | 6      | 0.7559        | 0.8548     |
| 1.6732     | 8      | 0.7032        | -          |
| 1.8824     | 9      | -             | 0.6840     |
| 2.0915     | 10     | 0.474         | -          |
| 2.5098     | 12     | 0.3959        | 0.6023     |
| 2.9281     | 14     | 0.3279        | -          |
| 3.1373     | 15     | -             | 0.5576     |
| 3.3464     | 16     | 0.2164        | -          |
| **3.7647** | **18** | **0.1991**    | **0.4972** |
| 4.1830     | 20     | 0.1378        | -          |
| 4.3922     | 21     | -             | 0.5081     |
| 4.6013     | 22     | 0.1168        | -          |
| 5.0196     | 24     | 0.0955        | 0.5000     |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->