AudioX
π§ AudioX: Diffusion Transformer for Anything-to-Audio Generation
[TL;DR]: AudioX is a unified Diffusion Transformer model for Anything-to-Audio and Music Generation, capable of generating high-quality general audio and music, offering flexible natural language control, and seamlessly processing various modalities including text, video, image, music, and audio.
Links
- Paper: Explore the research behind AudioX.
- Project: Visit the official project page for more information and updates.
Clone the repository
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/HKUSTAudio/AudioX
cd AudioX
conda create -n AudioX python=3.8.20
conda activate AudioX
pip install git+https://github.com/ZeyueT/AudioX.git
conda install -c conda-forge ffmpeg libsndfile
Usage
import torch
import torchaudio
from einops import rearrange
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
from stable_audio_tools.data.utils import read_video, merge_video_audio
from stable_audio_tools.data.utils import load_and_process_audio
import os
device = "cuda" if torch.cuda.is_available() else "cpu"
# Download model
model, model_config = get_pretrained_model("HKUSTAudio/AudioX")
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
target_fps = model_config["video_fps"]
seconds_start = 0
seconds_total = 10
model = model.to(device)
# for video-to-music generation
video_path = "video.mp4"
text_prompt = "Generate music for the video"
audio_path = None
video_tensor = read_video(video_path, seek_time=0, duration=seconds_total, target_fps=target_fps)
audio_tensor = load_and_process_audio(audio_path, sample_rate, seconds_start, seconds_total)
conditioning = [{
"video_prompt": [video_tensor.unsqueeze(0)],
"text_prompt": text_prompt,
"audio_prompt": audio_tensor.unsqueeze(0),
"seconds_start": seconds_start,
"seconds_total": seconds_total
}]
# Generate stereo audio
output = generate_diffusion_cond(
model,
steps=250,
cfg_scale=7,
conditioning=conditioning,
sample_size=sample_size,
sigma_min=0.3,
sigma_max=500,
sampler_type="dpmpp-3m-sde",
device=device
)
# Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)")
# Peak normalize, clip, convert to int16, and save to file
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
torchaudio.save("output.wav", output, sample_rate)
if video_path is not None and os.path.exists(video_path):
merge_video_audio(video_path, "output.wav", "output.mp4", 0, seconds_total)
Citation
If you find our work useful, please consider citing:
@article{tian2025audiox,
title={AudioX: Diffusion Transformer for Anything-to-Audio Generation},
author={Tian, Zeyue and Jin, Yizhu and Liu, Zhaoyang and Yuan, Ruibin and Tan, Xu and Chen, Qifeng and Xue, Wei and Guo, Yike},
journal={arXiv preprint arXiv:2503.10522},
year={2025}
}
- Downloads last month
- 1,019
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
HF Inference deployability: The model has no library tag.