|
--- |
|
license: mit |
|
language: |
|
- en |
|
base_model: |
|
- meta-llama/Meta-Llama-3-8B |
|
pipeline_tag: text-generation |
|
tags: |
|
- transformers |
|
--- |
|
|
|
## SPEED-synthesis-7b-senior |
|
|
|
[Little Giants: Synthesizing High-Quality Embedding Data at Scale](https://arxiv.org/pdf/2410.18634.pdf). Haonan Chen, Liang Wang, Nan Yang, Yutao Zhu, Ziliang Zhao, Furu Wei, Zhicheng Dou, arXiv 2024 |
|
|
|
This is the senior data synthesis model of SPEED. |
|
|
|
## Usage |
|
|
|
Below is an example to synthesize classification data using this senior generator. |
|
|
|
The prompts and misc scripts can be found in our [github page](https://github.com/haon-chen/SPEED) |
|
|
|
### Transformers |
|
|
|
```python |
|
import torch |
|
import os |
|
import random |
|
import numpy as np |
|
import json |
|
import re |
|
|
|
from torch import Tensor |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
from prompts_synthesis import get_create_classify_data_prompt |
|
from utils import fix_common_json_errors_and_loads |
|
|
|
|
|
LLAMA3_PROMPT = """ |
|
{prompt} [/INST] |
|
""".strip("\n") |
|
|
|
# Each query must come with a one-sentence instruction that describes the task |
|
tasks = [ |
|
'Identify the intended age group for educational technology products.', |
|
'Classify businesses based on their operational hours.' |
|
] |
|
language = 'English' |
|
|
|
prompts = [LLAMA3_PROMPT.format(prompt=get_create_classify_data_prompt(task=task, language=language)[1]['content']) for task in tasks] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('Haon-Chen/speed-synthesis-7b-senior') |
|
model = AutoModelForCausalLM.from_pretrained('Haon-Chen/speed-synthesis-7b-senior') |
|
model.to("cuda:0") |
|
model.eval() |
|
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token |
|
tokenizer.padding_side = "left" |
|
tokenizer.truncation_side = "left" |
|
|
|
with torch.inference_mode(): |
|
# Tokenize the input texts |
|
encodes = tokenizer(prompts, padding="longest", add_special_tokens=True, return_tensors="pt") |
|
input_ids = encodes.input_ids.to(model.device) |
|
attention_mask = encodes.attention_mask.to(model.device) |
|
|
|
# Set the generation parameters |
|
GEN_CONFIG = {"do_sample":True, "temperature": 1.0, "top_p": 1.0, "max_new_tokens": 800} |
|
output = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
pad_token_id = tokenizer.eos_token_id, |
|
**GEN_CONFIG |
|
) |
|
output_texts = tokenizer.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=False) |
|
batch_results = [] |
|
for i in range(len(output_texts)): |
|
batch_results.append(output_texts[i][len(prompts[i]):].strip(' ')) |
|
|
|
# Format outputs |
|
bad_cnt=0 |
|
outputs = [] |
|
for i, result in enumerate(batch_results): |
|
try: |
|
output = fix_common_json_errors_and_loads(result) |
|
user_query = output.get("input_text", "") |
|
positive_document = output.get("label", "") |
|
hard_negative_document = output.get("misleading_label", "") |
|
except: |
|
bad_cnt+=1 |
|
continue |
|
out_data = { |
|
"query": user_query, |
|
"positives": [positive_document], |
|
"negatives": [hard_negative_document], |
|
"language": "English", |
|
"task_definition": tasks[i], |
|
} |
|
outputs.append(out_data) |
|
print(bad_cnt) |
|
print(outputs) |
|
``` |
|
|
|
## Citation |
|
|
|
If you find our paper or models helpful, please consider cite as follows: |
|
|
|
```bibtex |
|
@article{chen2024little, |
|
title={Little Giants: Synthesizing High-Quality Embedding Data at Scale}, |
|
author={Chen, Haonan and Wang, Liang and Yang, Nan and Zhu, Yutao and Zhao, Ziliang and Wei, Furu and Dou, Zhicheng}, |
|
journal={arXiv preprint arXiv:2410.18634}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
## Limitations |