citizen_card

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0085
  • Cc Char: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 48}
  • Cc Number: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 48}
  • Dob: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 48}
  • First Name: {'precision': 0.9791666666666666, 'recall': 0.9791666666666666, 'f1': 0.9791666666666666, 'number': 48}
  • Health Number: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 52}
  • Height: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 48}
  • Last Name: {'precision': 0.9791666666666666, 'recall': 0.9791666666666666, 'f1': 0.9791666666666666, 'number': 48}
  • Nationality: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 48}
  • Nif: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 52}
  • Niss: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 52}
  • Parents: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 81}
  • Sex: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 48}
  • Validation: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 48}
  • Overall Precision: 0.9970
  • Overall Recall: 0.9970
  • Overall F1: 0.9970
  • Overall Accuracy: 0.9990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cc Char Cc Number Dob First Name Health Number Height Last Name Nationality Nif Niss Parents Sex Validation Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0213 1.0 400 0.0192 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 0.98, 'recall': 1.0, 'f1': 0.98989898989899, 'number': 49} {'precision': 0.8771929824561403, 'recall': 1.0, 'f1': 0.9345794392523363, 'number': 50} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 51} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 0.98, 'recall': 1.0, 'f1': 0.98989898989899, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 51} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 51} {'precision': 0.989247311827957, 'recall': 1.0, 'f1': 0.9945945945945946, 'number': 92} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 0.9795918367346939, 'recall': 0.9795918367346939, 'f1': 0.9795918367346939, 'number': 49} 0.9842 0.9985 0.9913 0.9977
0.0054 2.0 800 0.0032 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 50} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 51} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 51} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 51} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 92} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} 1.0 1.0 1.0 1.0
0.0099 3.0 1200 0.0019 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 50} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 51} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 51} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 51} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 92} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} 1.0 1.0 1.0 1.0
0.0023 4.0 1600 0.0013 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 50} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 51} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 51} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 51} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 92} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} 1.0 1.0 1.0 1.0
0.0022 5.0 2000 0.0012 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 50} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 51} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 51} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 51} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 92} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.1+cu128
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
12
Safetensors
Model size
126M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for HenriqueLin/citizen_card

Finetuned
(275)
this model