property_record
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0036
- Article Number: {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54}
- Building Number: {'precision': 0.9876543209876543, 'recall': 1.0, 'f1': 0.9937888198757764, 'number': 80}
- Coord X: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41}
- Coord Y: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41}
- Distrito: {'precision': 1.0, 'recall': 0.9818181818181818, 'f1': 0.9908256880733944, 'number': 55}
- Distrito Code: {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54}
- Floor Division: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79}
- Locality: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 88}
- Municipality: {'precision': 0.9833333333333333, 'recall': 0.9672131147540983, 'f1': 0.9752066115702478, 'number': 61}
- Municipality Code: {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54}
- Owner Name: {'precision': 0.98, 'recall': 1.0, 'f1': 0.98989898989899, 'number': 98}
- Owner Nif: {'precision': 0.9880952380952381, 'recall': 1.0, 'f1': 0.9940119760479043, 'number': 83}
- Parish: {'precision': 0.9864864864864865, 'recall': 0.9733333333333334, 'f1': 0.9798657718120806, 'number': 75}
- Parish Code: {'precision': 0.9814814814814815, 'recall': 0.9814814814814815, 'f1': 0.9814814814814815, 'number': 54}
- Postal Code: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 80}
- Property Fraction: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 75}
- Registry City: {'precision': 1.0, 'recall': 0.9818181818181818, 'f1': 0.9908256880733944, 'number': 55}
- Registry Number: {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54}
- Street Name: {'precision': 0.9901960784313726, 'recall': 0.9901960784313726, 'f1': 0.9901960784313726, 'number': 102}
- Overall Precision: 0.9937
- Overall Recall: 0.9906
- Overall F1: 0.9922
- Overall Accuracy: 0.9994
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Article Number | Building Number | Coord X | Coord Y | Distrito | Distrito Code | Floor Division | Locality | Municipality | Municipality Code | Owner Name | Owner Nif | Parish | Parish Code | Postal Code | Property Fraction | Registry City | Registry Number | Street Name | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.0098 | 1.0 | 769 | 0.0090 | {'precision': 1.0, 'recall': 0.9629629629629629, 'f1': 0.9811320754716981, 'number': 54} | {'precision': 1.0, 'recall': 0.9875, 'f1': 0.9937106918238994, 'number': 80} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} | {'precision': 0.9629629629629629, 'recall': 0.9454545454545454, 'f1': 0.9541284403669724, 'number': 55} | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 88} | {'precision': 0.95, 'recall': 0.9344262295081968, 'f1': 0.9421487603305784, 'number': 61} | {'precision': 0.9814814814814815, 'recall': 0.9814814814814815, 'f1': 0.9814814814814815, 'number': 54} | {'precision': 0.9607843137254902, 'recall': 1.0, 'f1': 0.98, 'number': 98} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 83} | {'precision': 0.948051948051948, 'recall': 0.9733333333333334, 'f1': 0.9605263157894737, 'number': 75} | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 80} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 75} | {'precision': 1.0, 'recall': 0.9818181818181818, 'f1': 0.9908256880733944, 'number': 55} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 54} | {'precision': 0.9595959595959596, 'recall': 0.9313725490196079, 'f1': 0.945273631840796, 'number': 102} | 0.9859 | 0.9821 | 0.9840 | 0.9991 |
| 0.0024 | 2.0 | 1538 | 0.0050 | {'precision': 0.9814814814814815, 'recall': 0.9814814814814815, 'f1': 0.9814814814814815, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 80} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} | {'precision': 0.9818181818181818, 'recall': 0.9818181818181818, 'f1': 0.9818181818181818, 'number': 55} | {'precision': 0.9814814814814815, 'recall': 0.9814814814814815, 'f1': 0.9814814814814815, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 88} | {'precision': 0.9655172413793104, 'recall': 0.9180327868852459, 'f1': 0.9411764705882353, 'number': 61} | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 0.98, 'recall': 1.0, 'f1': 0.98989898989899, 'number': 98} | {'precision': 1.0, 'recall': 0.9879518072289156, 'f1': 0.993939393939394, 'number': 83} | {'precision': 0.972972972972973, 'recall': 0.96, 'f1': 0.9664429530201343, 'number': 75} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 80} | {'precision': 1.0, 'recall': 0.9866666666666667, 'f1': 0.9932885906040269, 'number': 75} | {'precision': 1.0, 'recall': 0.9818181818181818, 'f1': 0.9908256880733944, 'number': 55} | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 1.0, 'recall': 0.9901960784313726, 'f1': 0.9950738916256158, 'number': 102} | 0.9929 | 0.9867 | 0.9898 | 0.9994 |
| 0.0012 | 3.0 | 2307 | 0.0061 | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 0.9875, 'recall': 0.9875, 'f1': 0.9875, 'number': 80} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} | {'precision': 1.0, 'recall': 0.9636363636363636, 'f1': 0.9814814814814815, 'number': 55} | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 88} | {'precision': 0.9672131147540983, 'recall': 0.9672131147540983, 'f1': 0.9672131147540983, 'number': 61} | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 98} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 83} | {'precision': 1.0, 'recall': 0.9733333333333334, 'f1': 0.9864864864864865, 'number': 75} | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 80} | {'precision': 1.0, 'recall': 0.9866666666666667, 'f1': 0.9932885906040269, 'number': 75} | {'precision': 1.0, 'recall': 0.9818181818181818, 'f1': 0.9908256880733944, 'number': 55} | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 1.0, 'recall': 0.9901960784313726, 'f1': 0.9950738916256158, 'number': 102} | 0.9976 | 0.9883 | 0.9930 | 0.9994 |
| 0.0032 | 4.0 | 3076 | 0.0041 | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 0.9876543209876543, 'recall': 1.0, 'f1': 0.9937888198757764, 'number': 80} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} | {'precision': 0.9821428571428571, 'recall': 1.0, 'f1': 0.9909909909909909, 'number': 55} | {'precision': 0.9814814814814815, 'recall': 0.9814814814814815, 'f1': 0.9814814814814815, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 88} | {'precision': 0.9827586206896551, 'recall': 0.9344262295081968, 'f1': 0.9579831932773109, 'number': 61} | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 0.98, 'recall': 1.0, 'f1': 0.98989898989899, 'number': 98} | {'precision': 0.9880952380952381, 'recall': 1.0, 'f1': 0.9940119760479043, 'number': 83} | {'precision': 0.9605263157894737, 'recall': 0.9733333333333334, 'f1': 0.9668874172185431, 'number': 75} | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 80} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 75} | {'precision': 1.0, 'recall': 0.9818181818181818, 'f1': 0.9908256880733944, 'number': 55} | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 0.9901960784313726, 'recall': 0.9901960784313726, 'f1': 0.9901960784313726, 'number': 102} | 0.9914 | 0.9899 | 0.9906 | 0.9993 |
| 0.0009 | 5.0 | 3845 | 0.0036 | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 0.9876543209876543, 'recall': 1.0, 'f1': 0.9937888198757764, 'number': 80} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} | {'precision': 1.0, 'recall': 0.9818181818181818, 'f1': 0.9908256880733944, 'number': 55} | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 88} | {'precision': 0.9833333333333333, 'recall': 0.9672131147540983, 'f1': 0.9752066115702478, 'number': 61} | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 0.98, 'recall': 1.0, 'f1': 0.98989898989899, 'number': 98} | {'precision': 0.9880952380952381, 'recall': 1.0, 'f1': 0.9940119760479043, 'number': 83} | {'precision': 0.9864864864864865, 'recall': 0.9733333333333334, 'f1': 0.9798657718120806, 'number': 75} | {'precision': 0.9814814814814815, 'recall': 0.9814814814814815, 'f1': 0.9814814814814815, 'number': 54} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 80} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 75} | {'precision': 1.0, 'recall': 0.9818181818181818, 'f1': 0.9908256880733944, 'number': 55} | {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} | {'precision': 0.9901960784313726, 'recall': 0.9901960784313726, 'f1': 0.9901960784313726, 'number': 102} | 0.9937 | 0.9906 | 0.9922 | 0.9994 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.1+cu128
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 6
Model tree for HenriqueLin/pt-property-record-layoutlmv3-ner
Base model
microsoft/layoutlmv3-base