property_record

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0036
  • Article Number: {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54}
  • Building Number: {'precision': 0.9876543209876543, 'recall': 1.0, 'f1': 0.9937888198757764, 'number': 80}
  • Coord X: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41}
  • Coord Y: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41}
  • Distrito: {'precision': 1.0, 'recall': 0.9818181818181818, 'f1': 0.9908256880733944, 'number': 55}
  • Distrito Code: {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54}
  • Floor Division: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79}
  • Locality: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 88}
  • Municipality: {'precision': 0.9833333333333333, 'recall': 0.9672131147540983, 'f1': 0.9752066115702478, 'number': 61}
  • Municipality Code: {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54}
  • Owner Name: {'precision': 0.98, 'recall': 1.0, 'f1': 0.98989898989899, 'number': 98}
  • Owner Nif: {'precision': 0.9880952380952381, 'recall': 1.0, 'f1': 0.9940119760479043, 'number': 83}
  • Parish: {'precision': 0.9864864864864865, 'recall': 0.9733333333333334, 'f1': 0.9798657718120806, 'number': 75}
  • Parish Code: {'precision': 0.9814814814814815, 'recall': 0.9814814814814815, 'f1': 0.9814814814814815, 'number': 54}
  • Postal Code: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 80}
  • Property Fraction: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 75}
  • Registry City: {'precision': 1.0, 'recall': 0.9818181818181818, 'f1': 0.9908256880733944, 'number': 55}
  • Registry Number: {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54}
  • Street Name: {'precision': 0.9901960784313726, 'recall': 0.9901960784313726, 'f1': 0.9901960784313726, 'number': 102}
  • Overall Precision: 0.9937
  • Overall Recall: 0.9906
  • Overall F1: 0.9922
  • Overall Accuracy: 0.9994

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Article Number Building Number Coord X Coord Y Distrito Distrito Code Floor Division Locality Municipality Municipality Code Owner Name Owner Nif Parish Parish Code Postal Code Property Fraction Registry City Registry Number Street Name Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0098 1.0 769 0.0090 {'precision': 1.0, 'recall': 0.9629629629629629, 'f1': 0.9811320754716981, 'number': 54} {'precision': 1.0, 'recall': 0.9875, 'f1': 0.9937106918238994, 'number': 80} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} {'precision': 0.9629629629629629, 'recall': 0.9454545454545454, 'f1': 0.9541284403669724, 'number': 55} {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 88} {'precision': 0.95, 'recall': 0.9344262295081968, 'f1': 0.9421487603305784, 'number': 61} {'precision': 0.9814814814814815, 'recall': 0.9814814814814815, 'f1': 0.9814814814814815, 'number': 54} {'precision': 0.9607843137254902, 'recall': 1.0, 'f1': 0.98, 'number': 98} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 83} {'precision': 0.948051948051948, 'recall': 0.9733333333333334, 'f1': 0.9605263157894737, 'number': 75} {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 80} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 75} {'precision': 1.0, 'recall': 0.9818181818181818, 'f1': 0.9908256880733944, 'number': 55} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 54} {'precision': 0.9595959595959596, 'recall': 0.9313725490196079, 'f1': 0.945273631840796, 'number': 102} 0.9859 0.9821 0.9840 0.9991
0.0024 2.0 1538 0.0050 {'precision': 0.9814814814814815, 'recall': 0.9814814814814815, 'f1': 0.9814814814814815, 'number': 54} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 80} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} {'precision': 0.9818181818181818, 'recall': 0.9818181818181818, 'f1': 0.9818181818181818, 'number': 55} {'precision': 0.9814814814814815, 'recall': 0.9814814814814815, 'f1': 0.9814814814814815, 'number': 54} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 88} {'precision': 0.9655172413793104, 'recall': 0.9180327868852459, 'f1': 0.9411764705882353, 'number': 61} {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 0.98, 'recall': 1.0, 'f1': 0.98989898989899, 'number': 98} {'precision': 1.0, 'recall': 0.9879518072289156, 'f1': 0.993939393939394, 'number': 83} {'precision': 0.972972972972973, 'recall': 0.96, 'f1': 0.9664429530201343, 'number': 75} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 54} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 80} {'precision': 1.0, 'recall': 0.9866666666666667, 'f1': 0.9932885906040269, 'number': 75} {'precision': 1.0, 'recall': 0.9818181818181818, 'f1': 0.9908256880733944, 'number': 55} {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 1.0, 'recall': 0.9901960784313726, 'f1': 0.9950738916256158, 'number': 102} 0.9929 0.9867 0.9898 0.9994
0.0012 3.0 2307 0.0061 {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 0.9875, 'recall': 0.9875, 'f1': 0.9875, 'number': 80} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} {'precision': 1.0, 'recall': 0.9636363636363636, 'f1': 0.9814814814814815, 'number': 55} {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 88} {'precision': 0.9672131147540983, 'recall': 0.9672131147540983, 'f1': 0.9672131147540983, 'number': 61} {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 98} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 83} {'precision': 1.0, 'recall': 0.9733333333333334, 'f1': 0.9864864864864865, 'number': 75} {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 80} {'precision': 1.0, 'recall': 0.9866666666666667, 'f1': 0.9932885906040269, 'number': 75} {'precision': 1.0, 'recall': 0.9818181818181818, 'f1': 0.9908256880733944, 'number': 55} {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 1.0, 'recall': 0.9901960784313726, 'f1': 0.9950738916256158, 'number': 102} 0.9976 0.9883 0.9930 0.9994
0.0032 4.0 3076 0.0041 {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 0.9876543209876543, 'recall': 1.0, 'f1': 0.9937888198757764, 'number': 80} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} {'precision': 0.9821428571428571, 'recall': 1.0, 'f1': 0.9909909909909909, 'number': 55} {'precision': 0.9814814814814815, 'recall': 0.9814814814814815, 'f1': 0.9814814814814815, 'number': 54} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 88} {'precision': 0.9827586206896551, 'recall': 0.9344262295081968, 'f1': 0.9579831932773109, 'number': 61} {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 0.98, 'recall': 1.0, 'f1': 0.98989898989899, 'number': 98} {'precision': 0.9880952380952381, 'recall': 1.0, 'f1': 0.9940119760479043, 'number': 83} {'precision': 0.9605263157894737, 'recall': 0.9733333333333334, 'f1': 0.9668874172185431, 'number': 75} {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 80} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 75} {'precision': 1.0, 'recall': 0.9818181818181818, 'f1': 0.9908256880733944, 'number': 55} {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 0.9901960784313726, 'recall': 0.9901960784313726, 'f1': 0.9901960784313726, 'number': 102} 0.9914 0.9899 0.9906 0.9993
0.0009 5.0 3845 0.0036 {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 0.9876543209876543, 'recall': 1.0, 'f1': 0.9937888198757764, 'number': 80} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 41} {'precision': 1.0, 'recall': 0.9818181818181818, 'f1': 0.9908256880733944, 'number': 55} {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 88} {'precision': 0.9833333333333333, 'recall': 0.9672131147540983, 'f1': 0.9752066115702478, 'number': 61} {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 0.98, 'recall': 1.0, 'f1': 0.98989898989899, 'number': 98} {'precision': 0.9880952380952381, 'recall': 1.0, 'f1': 0.9940119760479043, 'number': 83} {'precision': 0.9864864864864865, 'recall': 0.9733333333333334, 'f1': 0.9798657718120806, 'number': 75} {'precision': 0.9814814814814815, 'recall': 0.9814814814814815, 'f1': 0.9814814814814815, 'number': 54} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 80} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 75} {'precision': 1.0, 'recall': 0.9818181818181818, 'f1': 0.9908256880733944, 'number': 55} {'precision': 1.0, 'recall': 0.9814814814814815, 'f1': 0.9906542056074767, 'number': 54} {'precision': 0.9901960784313726, 'recall': 0.9901960784313726, 'f1': 0.9901960784313726, 'number': 102} 0.9937 0.9906 0.9922 0.9994

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.1+cu128
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
6
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for HenriqueLin/pt-property-record-layoutlmv3-ner

Finetuned
(283)
this model