leaderboard-pr-bot's picture
Adding Evaluation Results
56a363b
|
raw
history blame
2.98 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - HiTZ/alpaca_mt
model-index:
  - name: alpaca-lora-65b-en-pt-es-ca
    results: []

alpaca-lora-65b-en-pt-es-ca

This model is a fine-tuned version of /gaueko1/hizkuntza-ereduak/LLaMA/lm/huggingface/65B on the HiTZ/alpaca_mt ['en', 'pt', 'es', 'ca'] dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7271

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 63
  • total_train_batch_size: 126
  • total_eval_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.8069 0.06 100 0.8033
0.8008 0.13 200 0.7826
0.7687 0.19 300 0.7721
0.7719 0.25 400 0.7647
0.7585 0.32 500 0.7588
0.7578 0.38 600 0.7537
0.7505 0.44 700 0.7491
0.7531 0.51 800 0.7449
0.7394 0.57 900 0.7416
0.7368 0.63 1000 0.7387
0.7412 0.69 1100 0.7361
0.7344 0.76 1200 0.7288
0.7383 0.82 1300 0.7281
0.7378 0.88 1400 0.7274
0.7204 0.95 1500 0.7271

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 2.0.0+cu117
  • Datasets 2.10.1
  • Tokenizers 0.13.2

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 59.31
ARC (25-shot) 65.02
HellaSwag (10-shot) 84.88
MMLU (5-shot) 62.19
TruthfulQA (0-shot) 46.06
Winogrande (5-shot) 80.51
GSM8K (5-shot) 26.69
DROP (3-shot) 49.84