Grain Quality Classification Model ๐พ
A multi-task deep learning model for grain quality control, trained on Tesla T4 GPU.
Model Description
This model performs multi-task learning for grain quality assessment:
- Count Prediction: Estimates total grain count in images
- Good Grain Count: Counts high-quality grains
- Bad Grain Count: Counts low-quality/damaged grains
- Quality Classification: Binary classification (good/bad dominant)
Architecture
- Backbone: ResNet-50 (pre-trained on ImageNet)
- Input Size: 256x256 RGB images
- Multi-task heads: Separate heads for each prediction task
- Training: Mixed precision on Tesla T4 GPU
Training Details
- Epochs: 73
- Best Validation Loss: 23.005850791931152
- Optimizer: AdamW with OneCycleLR scheduler
- Data Augmentation: Extensive augmentations for robustness
- GPU: Tesla T4 with mixed precision training
Usage
import torch
from PIL import Image
import torchvision.transforms as transforms
# Load model
model = torch.load('pytorch_model.bin', map_location='cpu')
model.eval()
# Preprocessing
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Inference
image = Image.open('grain_image.jpg').convert('RGB')
input_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
outputs = model(input_tensor)
print(f"Count: {outputs['count'].item():.1f}")
print(f"Good grains: {outputs['good'].item():.1f}")
print(f"Bad grains: {outputs['bad'].item():.1f}")
print(f"Quality: {'Good' if outputs['quality'].argmax().item() == 1 else 'Bad'}")
Model Performance
- Trained on agricultural grain dataset
- Multi-task learning approach
- Optimized for real-time quality control applications
Citation
If you use this model, please cite:
@misc{grain_classifier_2025,
title={Grain Quality Classification Model},
author={Your Name},
year={2025},
howpublished={\url{https://huggingface.co/Hk4crprasad/grain-quality}}
}
License
MIT License - See LICENSE file for details.
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support