Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Grain Quality Classifier
|
3 |
+
emoji: 🌾
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: pytorch
|
7 |
+
app_file: app.py
|
8 |
+
pinned: false
|
9 |
+
license: mit
|
10 |
+
tags:
|
11 |
+
- grain
|
12 |
+
- agriculture
|
13 |
+
- computer-vision
|
14 |
+
- quality-control
|
15 |
+
- multi-task-learning
|
16 |
+
- pytorch
|
17 |
+
---
|
18 |
+
|
19 |
+
# Grain Quality Classification Model 🌾
|
20 |
+
|
21 |
+
A multi-task deep learning model for grain quality control, trained on Tesla T4 GPU.
|
22 |
+
|
23 |
+
## Model Description
|
24 |
+
|
25 |
+
This model performs multi-task learning for grain quality assessment:
|
26 |
+
- **Count Prediction**: Estimates total grain count in images
|
27 |
+
- **Good Grain Count**: Counts high-quality grains
|
28 |
+
- **Bad Grain Count**: Counts low-quality/damaged grains
|
29 |
+
- **Quality Classification**: Binary classification (good/bad dominant)
|
30 |
+
|
31 |
+
## Architecture
|
32 |
+
|
33 |
+
- **Backbone**: ResNet-50 (pre-trained on ImageNet)
|
34 |
+
- **Input Size**: 256x256 RGB images
|
35 |
+
- **Multi-task heads**: Separate heads for each prediction task
|
36 |
+
- **Training**: Mixed precision on Tesla T4 GPU
|
37 |
+
|
38 |
+
## Training Details
|
39 |
+
|
40 |
+
- **Epochs**: 73
|
41 |
+
- **Best Validation Loss**: 23.005850791931152
|
42 |
+
- **Optimizer**: AdamW with OneCycleLR scheduler
|
43 |
+
- **Data Augmentation**: Extensive augmentations for robustness
|
44 |
+
- **GPU**: Tesla T4 with mixed precision training
|
45 |
+
|
46 |
+
## Usage
|
47 |
+
|
48 |
+
```python
|
49 |
+
import torch
|
50 |
+
from PIL import Image
|
51 |
+
import torchvision.transforms as transforms
|
52 |
+
|
53 |
+
# Load model
|
54 |
+
model = torch.load('pytorch_model.bin', map_location='cpu')
|
55 |
+
model.eval()
|
56 |
+
|
57 |
+
# Preprocessing
|
58 |
+
transform = transforms.Compose([
|
59 |
+
transforms.Resize((256, 256)),
|
60 |
+
transforms.ToTensor(),
|
61 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
62 |
+
])
|
63 |
+
|
64 |
+
# Inference
|
65 |
+
image = Image.open('grain_image.jpg').convert('RGB')
|
66 |
+
input_tensor = transform(image).unsqueeze(0)
|
67 |
+
|
68 |
+
with torch.no_grad():
|
69 |
+
outputs = model(input_tensor)
|
70 |
+
|
71 |
+
print(f"Count: {outputs['count'].item():.1f}")
|
72 |
+
print(f"Good grains: {outputs['good'].item():.1f}")
|
73 |
+
print(f"Bad grains: {outputs['bad'].item():.1f}")
|
74 |
+
print(f"Quality: {'Good' if outputs['quality'].argmax().item() == 1 else 'Bad'}")
|
75 |
+
```
|
76 |
+
|
77 |
+
## Model Performance
|
78 |
+
|
79 |
+
- Trained on agricultural grain dataset
|
80 |
+
- Multi-task learning approach
|
81 |
+
- Optimized for real-time quality control applications
|
82 |
+
|
83 |
+
## Citation
|
84 |
+
|
85 |
+
If you use this model, please cite:
|
86 |
+
|
87 |
+
```bibtex
|
88 |
+
@misc{grain_classifier_2025,
|
89 |
+
title={Grain Quality Classification Model},
|
90 |
+
author={Your Name},
|
91 |
+
year={2025},
|
92 |
+
howpublished={\url{https://huggingface.co/Hk4crprasad/grain-quality}}
|
93 |
+
}
|
94 |
+
```
|
95 |
+
|
96 |
+
## License
|
97 |
+
|
98 |
+
MIT License - See LICENSE file for details.
|