SmolLm and mergekit_moe: is lm_head missing ?
Hello,
I am trying to play with mergekit-moe and SmolLm but I am facing a problem that I can't solve. I am not sure whether the problem is SmolLM related or mergekit-moe related.
Using a dummy merging config.yaml
such as
base_model: HuggingFaceTB/SmolLM-135M
gate_mode: random
dtype: bfloat16
experts:
- source_model: HuggingFaceTB/SmolLM-135M
- source_model: HuggingFaceTB/SmolLM-135M
and running the command
mergekit-moe config.yaml merge --copy-tokenizer
I am getting the following error
Fetching 7 files: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 7/7 [00:00<00:00, 70407.98it/s]
Fetching 7 files: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 7/7 [00:00<00:00, 8063.75it/s]
Fetching 7 files: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 7/7 [00:00<00:00, 18213.48it/s]
Warm up loaders: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3/3 [00:00<00:00, 4.13it/s]
Weights: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 272/273 [00:00<00:00, 2120.41it/s]
Traceback (most recent call last):
File "/home/ubuntu/merging/.venv/bin/mergekit-moe", line 8, in <module>
sys.exit(main())
File "/home/ubuntu/merging/.venv/lib/python3.10/site-packages/click/core.py", line 1157, in __call__
return self.main(*args, **kwargs)
File "/home/ubuntu/merging/.venv/lib/python3.10/site-packages/click/core.py", line 1078, in main
rv = self.invoke(ctx)
File "/home/ubuntu/merging/.venv/lib/python3.10/site-packages/click/core.py", line 1434, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "/home/ubuntu/merging/.venv/lib/python3.10/site-packages/click/core.py", line 783, in invoke
return __callback(*args, **kwargs)
File "/home/ubuntu/merging/mergekit/mergekit/options.py", line 82, in wrapper
f(*args, **kwargs)
File "/home/ubuntu/merging/mergekit/mergekit/scripts/moe.py", line 211, in main
build(
File "/home/ubuntu/merging/mergekit/mergekit/scripts/moe.py", line 82, in build
out_arch.write_model(
File "/home/ubuntu/merging/mergekit/mergekit/moe/mixtral.py", line 160, in write_model
tensor = base_loader.get_tensor(
File "/home/ubuntu/merging/mergekit/mergekit/io/lazy_tensor_loader.py", line 127, in get_tensor
raise KeyError(key)
KeyError: 'lm_head.weight'
somehow lm_head.weight
seems to be missing. But when I load SmolLM and inspect the layers I get
LlamaForCausalLM(
(model): LlamaModel(
(embed_tokens): Embedding(49152, 576)
(layers): ModuleList(
(0-29): 30 x LlamaDecoderLayer(
(self_attn): LlamaSdpaAttention(
(q_proj): Linear(in_features=576, out_features=576, bias=False)
(k_proj): Linear(in_features=576, out_features=192, bias=False)
(v_proj): Linear(in_features=576, out_features=192, bias=False)
(o_proj): Linear(in_features=576, out_features=576, bias=False)
(rotary_emb): LlamaRotaryEmbedding()
)
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=576, out_features=1536, bias=False)
(up_proj): Linear(in_features=576, out_features=1536, bias=False)
(down_proj): Linear(in_features=1536, out_features=576, bias=False)
(act_fn): SiLU()
)
(input_layernorm): LlamaRMSNorm((576,), eps=1e-05)
(post_attention_layernorm): LlamaRMSNorm((576,), eps=1e-05)
)
)
(norm): LlamaRMSNorm((576,), eps=1e-05)
(rotary_emb): LlamaRotaryEmbedding()
)
(lm_head): Linear(in_features=576, out_features=49152, bias=False)
)
indicating that lm_head
is right where it should be.
However when I inspect the layers from HF "Files and versions tab" lm_head
does not appear as suggests the following screenshot
somehow lm_head
seems to be missing...
Any thoughts?
Hey, It's due to the use of tie_word_embeddings=true
parameter, the lm_head is the same as the embed_tokens layer (but transposed). You probably have to replace AutoModel
by AutoModelForCausalLM
somewhere in the mergekit-moe
to make it work.
Hello, yes that was it!
Pointing toward model.embed_tokens.weight
when asked for lm_head.weight
solves the merging problem.
mergekit has json files that define the architecture of current models, I will add one for SmolLm to avoid interfering with the source code.
Thanks for the help!
I had the same issue. Could you explain in more detail how to fix it?
hello, it's been a while since I looked at it. As I recall I only changed mergekit/moe/mixtral.py by adding lines 145-147 and 161-173 as in the following code, quick and dirty fix, hope this helps!
# Copyright (C) 2024 Charles O. Goddard
#
# This software is free software: you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This software is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see http://www.gnu.org/licenses/.
import logging
from typing import List, Optional
import torch
import tqdm
import transformers
from mergekit.architecture import MISTRAL_INFO, WeightInfo
from mergekit.moe.arch import MoEOutputArchitecture
from mergekit.moe.common import initialize_io, noise_and_scale, select_dtype
from mergekit.moe.config import MoEMergeConfig
from mergekit.options import MergeOptions
class MixtralMoE(MoEOutputArchitecture):
def name(self) -> str:
return "Mixtral"
def supports_config(
self,
config: MoEMergeConfig,
explain: bool = False,
trust_remote_code: bool = False,
) -> bool:
if config.shared_experts:
if explain:
logging.warning("Mixtral does not support shared experts")
return False
model_types = []
for model_ref in [config.base_model] + [e.source_model for e in config.experts]:
model_cfg = model_ref.config(trust_remote_code=trust_remote_code)
model_types.append(model_cfg.model_type)
if len(set(model_types)) != 1:
if explain:
logging.warning(
"Mixtral requires all input models to have the same architecture"
)
return False
if model_types[0] not in ("llama", "mistral"):
if explain:
logging.warning(
"Mixtral requires all input models to be Llama or Mistral models"
)
return False
return True
def _generate_config(
self,
base_config: transformers.PretrainedConfig,
num_experts: int,
shared_experts: Optional[int] = None,
experts_per_token: Optional[int] = None,
) -> transformers.PretrainedConfig:
if shared_experts:
raise NotImplementedError("Shared experts not supported for Mixtral output")
if not isinstance(base_config, transformers.MistralConfig):
base_cfg_mistral = transformers.MistralConfig(**base_config.to_dict())
base_cfg_mistral.sliding_window = None
base_cfg_mistral.max_position_embeddings = (
base_config.max_position_embeddings
)
base_config = base_cfg_mistral
out_cfg = transformers.MixtralConfig(**base_config.to_dict())
out_cfg.architectures = ["MixtralForCausalLM"]
out_cfg.num_local_experts = num_experts
out_cfg.num_experts_per_tok = experts_per_token or 2
out_cfg.sliding_window = None
if (out_cfg.num_local_experts & (out_cfg.num_local_experts - 1)) != 0:
logging.warning(
f"Your model has {out_cfg.num_local_experts} experts, which is "
"not a power of two. The model will not be usable in llama.cpp."
)
return out_cfg
def _remap_weight_name(self, weight: WeightInfo) -> str:
if ".mlp." not in weight.name:
# Everything but MLP is identical to base Mistral
return weight.name
res = weight.name
for needle, replacement in [
(".mlp.gate_proj", ".block_sparse_moe.experts.{expert_idx}.w1"),
(".mlp.down_proj", ".block_sparse_moe.experts.{expert_idx}.w2"),
(".mlp.up_proj", ".block_sparse_moe.experts.{expert_idx}.w3"),
]:
res = res.replace(needle, replacement)
return res
def _router_weight_name(self, layer_idx: int) -> str:
return f"model.layers.{layer_idx}.block_sparse_moe.gate.weight"
def write_model(
self,
out_path: str,
config: MoEMergeConfig,
merge_options: MergeOptions,
router_weights: List[torch.Tensor],
shared_router_weights: Optional[List[torch.Tensor]] = None,
):
base_model = config.base_model
base_cfg = base_model.config(trust_remote_code=merge_options.trust_remote_code)
assert len(router_weights) == base_cfg.num_hidden_layers, (
f"Expected {base_cfg.num_hidden_layers} router weights, "
f"got {len(router_weights)}"
)
out_dtype = select_dtype(config, base_cfg)
out_cfg = self._generate_config(
base_cfg,
len(config.experts),
len(config.shared_experts or []),
config.experts_per_token,
)
out_cfg.torch_dtype = out_dtype
out_cfg.save_pretrained(out_path)
loaders, base_loader, writer = initialize_io(config, out_path, merge_options)
for weight_info in tqdm.tqdm(
MISTRAL_INFO.all_weights(base_cfg),
desc="Weights",
):
tensor_name = self._remap_weight_name(weight_info)
if "{expert_idx}" in tensor_name:
if tensor_name=="lm_head.weight":
print("1")
print(tensor_name.split('.')[0])
for expert_index, expert in enumerate(config.experts):
expert_name = tensor_name.replace("{expert_idx}", str(expert_index))
expert_loader = loaders.get(expert.source_model)
tensor = expert_loader.get_tensor(
weight_info.name, aliases=weight_info.aliases
)
tensor = noise_and_scale(
tensor, expert, is_residual="down_proj" in tensor_name
)
writer.save_tensor(
expert_name,
tensor.to(dtype=out_dtype),
clone=merge_options.clone_tensors,
)
else:
if tensor_name=="lm_head.weight" and base_cfg.tie_word_embeddings:
print("2")
print(base_cfg)
print(tensor_name.split('.')[0])
tensor = base_loader.get_tensor(
"model.embed_tokens.weight", aliases=weight_info.aliases
)
else:
tensor = base_loader.get_tensor(
tensor_name, aliases=weight_info.aliases
)
writer.save_tensor(
tensor_name,
tensor.to(dtype=out_dtype),
clone=merge_options.clone_tensors,
)
for layer_idx, weight in enumerate(
tqdm.tqdm(router_weights, desc="Router weights")
):
writer.save_tensor(
self._router_weight_name(layer_idx),
weight.to(dtype=out_dtype).contiguous(),
clone=merge_options.clone_tensors,
)
writer.finalize()
@sylvain471 Thanks :)
great, I am glad it helped, I close the subject then