prateeky2806's picture
Training in progress, step 3400
bc74e8d
{
"best_metric": null,
"best_model_checkpoint": null,
"epoch": 1.5590966410638543,
"global_step": 3400,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.0,
"learning_rate": 0.0002,
"loss": 0.7825,
"step": 10
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7565,
"step": 20
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7408,
"step": 30
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7496,
"step": 40
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7424,
"step": 50
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7112,
"step": 60
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7409,
"step": 70
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.7646,
"step": 80
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.7129,
"step": 90
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7671,
"step": 100
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7166,
"step": 110
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7113,
"step": 120
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.6682,
"step": 130
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7644,
"step": 140
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.6813,
"step": 150
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.6447,
"step": 160
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.6587,
"step": 170
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.6657,
"step": 180
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.681,
"step": 190
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.7142,
"step": 200
},
{
"epoch": 0.09,
"eval_loss": 0.6789492964744568,
"eval_runtime": 280.115,
"eval_samples_per_second": 3.57,
"eval_steps_per_second": 0.892,
"step": 200
},
{
"epoch": 0.09,
"mmlu_eval_accuracy": 0.4601645000494307,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9642877595465115,
"step": 200
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.6854,
"step": 210
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7256,
"step": 220
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.7505,
"step": 230
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.618,
"step": 240
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.6726,
"step": 250
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.6882,
"step": 260
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.6982,
"step": 270
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.661,
"step": 280
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.699,
"step": 290
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.6867,
"step": 300
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.7127,
"step": 310
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.7141,
"step": 320
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.6483,
"step": 330
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.6532,
"step": 340
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.6474,
"step": 350
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.6728,
"step": 360
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.6736,
"step": 370
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.7164,
"step": 380
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.6844,
"step": 390
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.6797,
"step": 400
},
{
"epoch": 0.18,
"eval_loss": 0.6707000732421875,
"eval_runtime": 280.204,
"eval_samples_per_second": 3.569,
"eval_steps_per_second": 0.892,
"step": 400
},
{
"epoch": 0.18,
"mmlu_eval_accuracy": 0.4521886129310749,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.42105263157894735,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.92568634446545,
"step": 400
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.7059,
"step": 410
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.79,
"step": 420
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.7714,
"step": 430
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.644,
"step": 440
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.7102,
"step": 450
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.6229,
"step": 460
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.6742,
"step": 470
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.6997,
"step": 480
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.6598,
"step": 490
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.7154,
"step": 500
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.6796,
"step": 510
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.6769,
"step": 520
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.6663,
"step": 530
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.6758,
"step": 540
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.7022,
"step": 550
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.706,
"step": 560
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.7188,
"step": 570
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.7077,
"step": 580
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.6352,
"step": 590
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.6203,
"step": 600
},
{
"epoch": 0.28,
"eval_loss": 0.664973795413971,
"eval_runtime": 280.1433,
"eval_samples_per_second": 3.57,
"eval_steps_per_second": 0.892,
"step": 600
},
{
"epoch": 0.28,
"mmlu_eval_accuracy": 0.44929002048717553,
"mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3588235294117647,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9583329685985575,
"step": 600
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.6652,
"step": 610
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.6509,
"step": 620
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.6722,
"step": 630
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.7112,
"step": 640
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.6976,
"step": 650
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.6842,
"step": 660
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.6913,
"step": 670
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.6879,
"step": 680
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.6684,
"step": 690
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.7271,
"step": 700
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.6683,
"step": 710
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.6531,
"step": 720
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.6948,
"step": 730
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.68,
"step": 740
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.6339,
"step": 750
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.602,
"step": 760
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.6817,
"step": 770
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.6686,
"step": 780
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.6869,
"step": 790
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.655,
"step": 800
},
{
"epoch": 0.37,
"eval_loss": 0.6593752503395081,
"eval_runtime": 280.0748,
"eval_samples_per_second": 3.57,
"eval_steps_per_second": 0.893,
"step": 800
},
{
"epoch": 0.37,
"mmlu_eval_accuracy": 0.46269190662697585,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.22,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.22580645161290322,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5925925925925926,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.1274755495957856,
"step": 800
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.7119,
"step": 810
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 0.6581,
"step": 820
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 0.6475,
"step": 830
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.6944,
"step": 840
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.6469,
"step": 850
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.7231,
"step": 860
},
{
"epoch": 0.4,
"learning_rate": 0.0002,
"loss": 0.6182,
"step": 870
},
{
"epoch": 0.4,
"learning_rate": 0.0002,
"loss": 0.7032,
"step": 880
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.6291,
"step": 890
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.6845,
"step": 900
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.7016,
"step": 910
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.6921,
"step": 920
},
{
"epoch": 0.43,
"learning_rate": 0.0002,
"loss": 0.6908,
"step": 930
},
{
"epoch": 0.43,
"learning_rate": 0.0002,
"loss": 0.7402,
"step": 940
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.6553,
"step": 950
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.6525,
"step": 960
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.7003,
"step": 970
},
{
"epoch": 0.45,
"learning_rate": 0.0002,
"loss": 0.7082,
"step": 980
},
{
"epoch": 0.45,
"learning_rate": 0.0002,
"loss": 0.6757,
"step": 990
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.6803,
"step": 1000
},
{
"epoch": 0.46,
"eval_loss": 0.656200647354126,
"eval_runtime": 279.9415,
"eval_samples_per_second": 3.572,
"eval_steps_per_second": 0.893,
"step": 1000
},
{
"epoch": 0.46,
"mmlu_eval_accuracy": 0.46074490234022447,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.5454545454545454,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.23529411764705882,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.34705882352941175,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.016490816680943,
"step": 1000
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.6489,
"step": 1010
},
{
"epoch": 0.47,
"learning_rate": 0.0002,
"loss": 0.5919,
"step": 1020
},
{
"epoch": 0.47,
"learning_rate": 0.0002,
"loss": 0.721,
"step": 1030
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.6696,
"step": 1040
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.6976,
"step": 1050
},
{
"epoch": 0.49,
"learning_rate": 0.0002,
"loss": 0.6665,
"step": 1060
},
{
"epoch": 0.49,
"learning_rate": 0.0002,
"loss": 0.6343,
"step": 1070
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 0.6133,
"step": 1080
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 0.6259,
"step": 1090
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 0.6446,
"step": 1100
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.705,
"step": 1110
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.6445,
"step": 1120
},
{
"epoch": 0.52,
"learning_rate": 0.0002,
"loss": 0.7156,
"step": 1130
},
{
"epoch": 0.52,
"learning_rate": 0.0002,
"loss": 0.6842,
"step": 1140
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.6528,
"step": 1150
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.7015,
"step": 1160
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 0.679,
"step": 1170
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 0.6509,
"step": 1180
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.6369,
"step": 1190
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.6512,
"step": 1200
},
{
"epoch": 0.55,
"eval_loss": 0.6535513997077942,
"eval_runtime": 279.9064,
"eval_samples_per_second": 3.573,
"eval_steps_per_second": 0.893,
"step": 1200
},
{
"epoch": 0.55,
"mmlu_eval_accuracy": 0.4563086650055728,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.3684210526315789,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.34705882352941175,
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.0143195821006366,
"step": 1200
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.6658,
"step": 1210
},
{
"epoch": 0.56,
"learning_rate": 0.0002,
"loss": 0.7283,
"step": 1220
},
{
"epoch": 0.56,
"learning_rate": 0.0002,
"loss": 0.6944,
"step": 1230
},
{
"epoch": 0.57,
"learning_rate": 0.0002,
"loss": 0.6326,
"step": 1240
},
{
"epoch": 0.57,
"learning_rate": 0.0002,
"loss": 0.6574,
"step": 1250
},
{
"epoch": 0.58,
"learning_rate": 0.0002,
"loss": 0.6239,
"step": 1260
},
{
"epoch": 0.58,
"learning_rate": 0.0002,
"loss": 0.7219,
"step": 1270
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 0.6704,
"step": 1280
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 0.6708,
"step": 1290
},
{
"epoch": 0.6,
"learning_rate": 0.0002,
"loss": 0.6862,
"step": 1300
},
{
"epoch": 0.6,
"learning_rate": 0.0002,
"loss": 0.6771,
"step": 1310
},
{
"epoch": 0.61,
"learning_rate": 0.0002,
"loss": 0.661,
"step": 1320
},
{
"epoch": 0.61,
"learning_rate": 0.0002,
"loss": 0.6742,
"step": 1330
},
{
"epoch": 0.61,
"learning_rate": 0.0002,
"loss": 0.6734,
"step": 1340
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 0.6798,
"step": 1350
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 0.6152,
"step": 1360
},
{
"epoch": 0.63,
"learning_rate": 0.0002,
"loss": 0.671,
"step": 1370
},
{
"epoch": 0.63,
"learning_rate": 0.0002,
"loss": 0.7562,
"step": 1380
},
{
"epoch": 0.64,
"learning_rate": 0.0002,
"loss": 0.7571,
"step": 1390
},
{
"epoch": 0.64,
"learning_rate": 0.0002,
"loss": 0.6926,
"step": 1400
},
{
"epoch": 0.64,
"eval_loss": 0.6509103178977966,
"eval_runtime": 280.3444,
"eval_samples_per_second": 3.567,
"eval_steps_per_second": 0.892,
"step": 1400
},
{
"epoch": 0.64,
"mmlu_eval_accuracy": 0.4563542680952826,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.42105263157894735,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.092854514290085,
"step": 1400
},
{
"epoch": 0.65,
"learning_rate": 0.0002,
"loss": 0.6375,
"step": 1410
},
{
"epoch": 0.65,
"learning_rate": 0.0002,
"loss": 0.6123,
"step": 1420
},
{
"epoch": 0.66,
"learning_rate": 0.0002,
"loss": 0.6628,
"step": 1430
},
{
"epoch": 0.66,
"learning_rate": 0.0002,
"loss": 0.7702,
"step": 1440
},
{
"epoch": 0.66,
"learning_rate": 0.0002,
"loss": 0.7076,
"step": 1450
},
{
"epoch": 0.67,
"learning_rate": 0.0002,
"loss": 0.704,
"step": 1460
},
{
"epoch": 0.67,
"learning_rate": 0.0002,
"loss": 0.6406,
"step": 1470
},
{
"epoch": 0.68,
"learning_rate": 0.0002,
"loss": 0.669,
"step": 1480
},
{
"epoch": 0.68,
"learning_rate": 0.0002,
"loss": 0.6253,
"step": 1490
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.6544,
"step": 1500
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.6018,
"step": 1510
},
{
"epoch": 0.7,
"learning_rate": 0.0002,
"loss": 0.6673,
"step": 1520
},
{
"epoch": 0.7,
"learning_rate": 0.0002,
"loss": 0.705,
"step": 1530
},
{
"epoch": 0.71,
"learning_rate": 0.0002,
"loss": 0.6875,
"step": 1540
},
{
"epoch": 0.71,
"learning_rate": 0.0002,
"loss": 0.6864,
"step": 1550
},
{
"epoch": 0.72,
"learning_rate": 0.0002,
"loss": 0.6465,
"step": 1560
},
{
"epoch": 0.72,
"learning_rate": 0.0002,
"loss": 0.6714,
"step": 1570
},
{
"epoch": 0.72,
"learning_rate": 0.0002,
"loss": 0.627,
"step": 1580
},
{
"epoch": 0.73,
"learning_rate": 0.0002,
"loss": 0.5958,
"step": 1590
},
{
"epoch": 0.73,
"learning_rate": 0.0002,
"loss": 0.62,
"step": 1600
},
{
"epoch": 0.73,
"eval_loss": 0.6470592617988586,
"eval_runtime": 280.3872,
"eval_samples_per_second": 3.566,
"eval_steps_per_second": 0.892,
"step": 1600
},
{
"epoch": 0.73,
"mmlu_eval_accuracy": 0.448089860540604,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.3125,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.84,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.9696583512090827,
"step": 1600
},
{
"epoch": 0.74,
"learning_rate": 0.0002,
"loss": 0.722,
"step": 1610
},
{
"epoch": 0.74,
"learning_rate": 0.0002,
"loss": 0.6225,
"step": 1620
},
{
"epoch": 0.75,
"learning_rate": 0.0002,
"loss": 0.7043,
"step": 1630
},
{
"epoch": 0.75,
"learning_rate": 0.0002,
"loss": 0.6671,
"step": 1640
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 0.6424,
"step": 1650
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 0.641,
"step": 1660
},
{
"epoch": 0.77,
"learning_rate": 0.0002,
"loss": 0.6494,
"step": 1670
},
{
"epoch": 0.77,
"learning_rate": 0.0002,
"loss": 0.6845,
"step": 1680
},
{
"epoch": 0.77,
"learning_rate": 0.0002,
"loss": 0.6646,
"step": 1690
},
{
"epoch": 0.78,
"learning_rate": 0.0002,
"loss": 0.6706,
"step": 1700
},
{
"epoch": 0.78,
"learning_rate": 0.0002,
"loss": 0.6993,
"step": 1710
},
{
"epoch": 0.79,
"learning_rate": 0.0002,
"loss": 0.6672,
"step": 1720
},
{
"epoch": 0.79,
"learning_rate": 0.0002,
"loss": 0.6114,
"step": 1730
},
{
"epoch": 0.8,
"learning_rate": 0.0002,
"loss": 0.7194,
"step": 1740
},
{
"epoch": 0.8,
"learning_rate": 0.0002,
"loss": 0.6669,
"step": 1750
},
{
"epoch": 0.81,
"learning_rate": 0.0002,
"loss": 0.6482,
"step": 1760
},
{
"epoch": 0.81,
"learning_rate": 0.0002,
"loss": 0.681,
"step": 1770
},
{
"epoch": 0.82,
"learning_rate": 0.0002,
"loss": 0.718,
"step": 1780
},
{
"epoch": 0.82,
"learning_rate": 0.0002,
"loss": 0.6948,
"step": 1790
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.6835,
"step": 1800
},
{
"epoch": 0.83,
"eval_loss": 0.6446049809455872,
"eval_runtime": 280.3145,
"eval_samples_per_second": 3.567,
"eval_steps_per_second": 0.892,
"step": 1800
},
{
"epoch": 0.83,
"mmlu_eval_accuracy": 0.45510585655253843,
"mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.5625,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.3448275862068966,
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.84,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6395348837209303,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6363636363636364,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.3235294117647059,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7894736842105263,
"mmlu_loss": 0.9942787007936921,
"step": 1800
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.7031,
"step": 1810
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.6805,
"step": 1820
},
{
"epoch": 0.84,
"learning_rate": 0.0002,
"loss": 0.6863,
"step": 1830
},
{
"epoch": 0.84,
"learning_rate": 0.0002,
"loss": 0.6567,
"step": 1840
},
{
"epoch": 0.85,
"learning_rate": 0.0002,
"loss": 0.6927,
"step": 1850
},
{
"epoch": 0.85,
"learning_rate": 0.0002,
"loss": 0.6175,
"step": 1860
},
{
"epoch": 0.86,
"learning_rate": 0.0002,
"loss": 0.6129,
"step": 1870
},
{
"epoch": 0.86,
"learning_rate": 0.0002,
"loss": 0.6336,
"step": 1880
},
{
"epoch": 0.87,
"learning_rate": 0.0002,
"loss": 0.6401,
"step": 1890
},
{
"epoch": 0.87,
"learning_rate": 0.0002,
"loss": 0.7285,
"step": 1900
},
{
"epoch": 0.88,
"learning_rate": 0.0002,
"loss": 0.6415,
"step": 1910
},
{
"epoch": 0.88,
"learning_rate": 0.0002,
"loss": 0.6468,
"step": 1920
},
{
"epoch": 0.89,
"learning_rate": 0.0002,
"loss": 0.6636,
"step": 1930
},
{
"epoch": 0.89,
"learning_rate": 0.0002,
"loss": 0.6919,
"step": 1940
},
{
"epoch": 0.89,
"learning_rate": 0.0002,
"loss": 0.6298,
"step": 1950
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.6582,
"step": 1960
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.6691,
"step": 1970
},
{
"epoch": 0.91,
"learning_rate": 0.0002,
"loss": 0.6143,
"step": 1980
},
{
"epoch": 0.91,
"learning_rate": 0.0002,
"loss": 0.669,
"step": 1990
},
{
"epoch": 0.92,
"learning_rate": 0.0002,
"loss": 0.6456,
"step": 2000
},
{
"epoch": 0.92,
"eval_loss": 0.6425969004631042,
"eval_runtime": 280.0301,
"eval_samples_per_second": 3.571,
"eval_steps_per_second": 0.893,
"step": 2000
},
{
"epoch": 0.92,
"mmlu_eval_accuracy": 0.46047223663644893,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3588235294117647,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.3333333333333333,
"mmlu_eval_accuracy_security_studies": 0.5925925925925926,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.0820855114696541,
"step": 2000
},
{
"epoch": 0.92,
"learning_rate": 0.0002,
"loss": 0.6321,
"step": 2010
},
{
"epoch": 0.93,
"learning_rate": 0.0002,
"loss": 0.6499,
"step": 2020
},
{
"epoch": 0.93,
"learning_rate": 0.0002,
"loss": 0.6446,
"step": 2030
},
{
"epoch": 0.94,
"learning_rate": 0.0002,
"loss": 0.6603,
"step": 2040
},
{
"epoch": 0.94,
"learning_rate": 0.0002,
"loss": 0.6327,
"step": 2050
},
{
"epoch": 0.94,
"learning_rate": 0.0002,
"loss": 0.6378,
"step": 2060
},
{
"epoch": 0.95,
"learning_rate": 0.0002,
"loss": 0.6464,
"step": 2070
},
{
"epoch": 0.95,
"learning_rate": 0.0002,
"loss": 0.6703,
"step": 2080
},
{
"epoch": 0.96,
"learning_rate": 0.0002,
"loss": 0.6605,
"step": 2090
},
{
"epoch": 0.96,
"learning_rate": 0.0002,
"loss": 0.7188,
"step": 2100
},
{
"epoch": 0.97,
"learning_rate": 0.0002,
"loss": 0.5815,
"step": 2110
},
{
"epoch": 0.97,
"learning_rate": 0.0002,
"loss": 0.6385,
"step": 2120
},
{
"epoch": 0.98,
"learning_rate": 0.0002,
"loss": 0.6801,
"step": 2130
},
{
"epoch": 0.98,
"learning_rate": 0.0002,
"loss": 0.6469,
"step": 2140
},
{
"epoch": 0.99,
"learning_rate": 0.0002,
"loss": 0.7189,
"step": 2150
},
{
"epoch": 0.99,
"learning_rate": 0.0002,
"loss": 0.6318,
"step": 2160
},
{
"epoch": 1.0,
"learning_rate": 0.0002,
"loss": 0.6137,
"step": 2170
},
{
"epoch": 1.0,
"learning_rate": 0.0002,
"loss": 0.6902,
"step": 2180
},
{
"epoch": 1.0,
"learning_rate": 0.0002,
"loss": 0.5861,
"step": 2190
},
{
"epoch": 1.01,
"learning_rate": 0.0002,
"loss": 0.5541,
"step": 2200
},
{
"epoch": 1.01,
"eval_loss": 0.6430545449256897,
"eval_runtime": 280.4147,
"eval_samples_per_second": 3.566,
"eval_steps_per_second": 0.892,
"step": 2200
},
{
"epoch": 1.01,
"mmlu_eval_accuracy": 0.4584028242608573,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.3125,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.42105263157894735,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.5882352941176471,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.36470588235294116,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.0568978693093083,
"step": 2200
},
{
"epoch": 1.01,
"learning_rate": 0.0002,
"loss": 0.5721,
"step": 2210
},
{
"epoch": 1.02,
"learning_rate": 0.0002,
"loss": 0.6119,
"step": 2220
},
{
"epoch": 1.02,
"learning_rate": 0.0002,
"loss": 0.5869,
"step": 2230
},
{
"epoch": 1.03,
"learning_rate": 0.0002,
"loss": 0.5941,
"step": 2240
},
{
"epoch": 1.03,
"learning_rate": 0.0002,
"loss": 0.5704,
"step": 2250
},
{
"epoch": 1.04,
"learning_rate": 0.0002,
"loss": 0.5647,
"step": 2260
},
{
"epoch": 1.04,
"learning_rate": 0.0002,
"loss": 0.5847,
"step": 2270
},
{
"epoch": 1.05,
"learning_rate": 0.0002,
"loss": 0.6367,
"step": 2280
},
{
"epoch": 1.05,
"learning_rate": 0.0002,
"loss": 0.6285,
"step": 2290
},
{
"epoch": 1.05,
"learning_rate": 0.0002,
"loss": 0.594,
"step": 2300
},
{
"epoch": 1.06,
"learning_rate": 0.0002,
"loss": 0.5427,
"step": 2310
},
{
"epoch": 1.06,
"learning_rate": 0.0002,
"loss": 0.6049,
"step": 2320
},
{
"epoch": 1.07,
"learning_rate": 0.0002,
"loss": 0.5583,
"step": 2330
},
{
"epoch": 1.07,
"learning_rate": 0.0002,
"loss": 0.682,
"step": 2340
},
{
"epoch": 1.08,
"learning_rate": 0.0002,
"loss": 0.6072,
"step": 2350
},
{
"epoch": 1.08,
"learning_rate": 0.0002,
"loss": 0.5772,
"step": 2360
},
{
"epoch": 1.09,
"learning_rate": 0.0002,
"loss": 0.6005,
"step": 2370
},
{
"epoch": 1.09,
"learning_rate": 0.0002,
"loss": 0.5758,
"step": 2380
},
{
"epoch": 1.1,
"learning_rate": 0.0002,
"loss": 0.6146,
"step": 2390
},
{
"epoch": 1.1,
"learning_rate": 0.0002,
"loss": 0.6002,
"step": 2400
},
{
"epoch": 1.1,
"eval_loss": 0.6426622271537781,
"eval_runtime": 280.2067,
"eval_samples_per_second": 3.569,
"eval_steps_per_second": 0.892,
"step": 2400
},
{
"epoch": 1.1,
"mmlu_eval_accuracy": 0.4610174096166174,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.36363636363636365,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.3125,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.6153846153846154,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.09090909090909091,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.22580645161290322,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.6666666666666666,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.061111478908255,
"step": 2400
},
{
"epoch": 1.11,
"learning_rate": 0.0002,
"loss": 0.5792,
"step": 2410
},
{
"epoch": 1.11,
"learning_rate": 0.0002,
"loss": 0.6418,
"step": 2420
},
{
"epoch": 1.11,
"learning_rate": 0.0002,
"loss": 0.6299,
"step": 2430
},
{
"epoch": 1.12,
"learning_rate": 0.0002,
"loss": 0.5279,
"step": 2440
},
{
"epoch": 1.12,
"learning_rate": 0.0002,
"loss": 0.6398,
"step": 2450
},
{
"epoch": 1.13,
"learning_rate": 0.0002,
"loss": 0.5968,
"step": 2460
},
{
"epoch": 1.13,
"learning_rate": 0.0002,
"loss": 0.5695,
"step": 2470
},
{
"epoch": 1.14,
"learning_rate": 0.0002,
"loss": 0.6187,
"step": 2480
},
{
"epoch": 1.14,
"learning_rate": 0.0002,
"loss": 0.5437,
"step": 2490
},
{
"epoch": 1.15,
"learning_rate": 0.0002,
"loss": 0.5727,
"step": 2500
},
{
"epoch": 1.15,
"learning_rate": 0.0002,
"loss": 0.4753,
"step": 2510
},
{
"epoch": 1.16,
"learning_rate": 0.0002,
"loss": 0.6232,
"step": 2520
},
{
"epoch": 1.16,
"learning_rate": 0.0002,
"loss": 0.633,
"step": 2530
},
{
"epoch": 1.16,
"learning_rate": 0.0002,
"loss": 0.5956,
"step": 2540
},
{
"epoch": 1.17,
"learning_rate": 0.0002,
"loss": 0.6124,
"step": 2550
},
{
"epoch": 1.17,
"learning_rate": 0.0002,
"loss": 0.6181,
"step": 2560
},
{
"epoch": 1.18,
"learning_rate": 0.0002,
"loss": 0.6387,
"step": 2570
},
{
"epoch": 1.18,
"learning_rate": 0.0002,
"loss": 0.6155,
"step": 2580
},
{
"epoch": 1.19,
"learning_rate": 0.0002,
"loss": 0.6258,
"step": 2590
},
{
"epoch": 1.19,
"learning_rate": 0.0002,
"loss": 0.6032,
"step": 2600
},
{
"epoch": 1.19,
"eval_loss": 0.6423451900482178,
"eval_runtime": 280.312,
"eval_samples_per_second": 3.567,
"eval_steps_per_second": 0.892,
"step": 2600
},
{
"epoch": 1.19,
"mmlu_eval_accuracy": 0.4612227123416292,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.36363636363636365,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.3125,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.23529411764705882,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.09090909090909091,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.5588235294117647,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.34705882352941175,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.6666666666666666,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.2192327713219366,
"step": 2600
},
{
"epoch": 1.2,
"learning_rate": 0.0002,
"loss": 0.5307,
"step": 2610
},
{
"epoch": 1.2,
"learning_rate": 0.0002,
"loss": 0.5679,
"step": 2620
},
{
"epoch": 1.21,
"learning_rate": 0.0002,
"loss": 0.5164,
"step": 2630
},
{
"epoch": 1.21,
"learning_rate": 0.0002,
"loss": 0.5856,
"step": 2640
},
{
"epoch": 1.22,
"learning_rate": 0.0002,
"loss": 0.5929,
"step": 2650
},
{
"epoch": 1.22,
"learning_rate": 0.0002,
"loss": 0.5641,
"step": 2660
},
{
"epoch": 1.22,
"learning_rate": 0.0002,
"loss": 0.6469,
"step": 2670
},
{
"epoch": 1.23,
"learning_rate": 0.0002,
"loss": 0.6327,
"step": 2680
},
{
"epoch": 1.23,
"learning_rate": 0.0002,
"loss": 0.5856,
"step": 2690
},
{
"epoch": 1.24,
"learning_rate": 0.0002,
"loss": 0.6145,
"step": 2700
},
{
"epoch": 1.24,
"learning_rate": 0.0002,
"loss": 0.6283,
"step": 2710
},
{
"epoch": 1.25,
"learning_rate": 0.0002,
"loss": 0.6128,
"step": 2720
},
{
"epoch": 1.25,
"learning_rate": 0.0002,
"loss": 0.6376,
"step": 2730
},
{
"epoch": 1.26,
"learning_rate": 0.0002,
"loss": 0.6523,
"step": 2740
},
{
"epoch": 1.26,
"learning_rate": 0.0002,
"loss": 0.6183,
"step": 2750
},
{
"epoch": 1.27,
"learning_rate": 0.0002,
"loss": 0.5849,
"step": 2760
},
{
"epoch": 1.27,
"learning_rate": 0.0002,
"loss": 0.5918,
"step": 2770
},
{
"epoch": 1.27,
"learning_rate": 0.0002,
"loss": 0.5817,
"step": 2780
},
{
"epoch": 1.28,
"learning_rate": 0.0002,
"loss": 0.5914,
"step": 2790
},
{
"epoch": 1.28,
"learning_rate": 0.0002,
"loss": 0.6112,
"step": 2800
},
{
"epoch": 1.28,
"eval_loss": 0.6401032209396362,
"eval_runtime": 280.2076,
"eval_samples_per_second": 3.569,
"eval_steps_per_second": 0.892,
"step": 2800
},
{
"epoch": 1.28,
"mmlu_eval_accuracy": 0.4665971182546491,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.3125,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5588235294117647,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.3235294117647059,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.36231884057971014,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.120126581145329,
"step": 2800
},
{
"epoch": 1.29,
"learning_rate": 0.0002,
"loss": 0.5801,
"step": 2810
},
{
"epoch": 1.29,
"learning_rate": 0.0002,
"loss": 0.6049,
"step": 2820
},
{
"epoch": 1.3,
"learning_rate": 0.0002,
"loss": 0.5906,
"step": 2830
},
{
"epoch": 1.3,
"learning_rate": 0.0002,
"loss": 0.5249,
"step": 2840
},
{
"epoch": 1.31,
"learning_rate": 0.0002,
"loss": 0.5618,
"step": 2850
},
{
"epoch": 1.31,
"learning_rate": 0.0002,
"loss": 0.6156,
"step": 2860
},
{
"epoch": 1.32,
"learning_rate": 0.0002,
"loss": 0.653,
"step": 2870
},
{
"epoch": 1.32,
"learning_rate": 0.0002,
"loss": 0.6135,
"step": 2880
},
{
"epoch": 1.33,
"learning_rate": 0.0002,
"loss": 0.5768,
"step": 2890
},
{
"epoch": 1.33,
"learning_rate": 0.0002,
"loss": 0.6161,
"step": 2900
},
{
"epoch": 1.33,
"learning_rate": 0.0002,
"loss": 0.5605,
"step": 2910
},
{
"epoch": 1.34,
"learning_rate": 0.0002,
"loss": 0.6134,
"step": 2920
},
{
"epoch": 1.34,
"learning_rate": 0.0002,
"loss": 0.5716,
"step": 2930
},
{
"epoch": 1.35,
"learning_rate": 0.0002,
"loss": 0.5686,
"step": 2940
},
{
"epoch": 1.35,
"learning_rate": 0.0002,
"loss": 0.5698,
"step": 2950
},
{
"epoch": 1.36,
"learning_rate": 0.0002,
"loss": 0.645,
"step": 2960
},
{
"epoch": 1.36,
"learning_rate": 0.0002,
"loss": 0.6123,
"step": 2970
},
{
"epoch": 1.37,
"learning_rate": 0.0002,
"loss": 0.5724,
"step": 2980
},
{
"epoch": 1.37,
"learning_rate": 0.0002,
"loss": 0.6046,
"step": 2990
},
{
"epoch": 1.38,
"learning_rate": 0.0002,
"loss": 0.5736,
"step": 3000
},
{
"epoch": 1.38,
"eval_loss": 0.6404744386672974,
"eval_runtime": 280.4678,
"eval_samples_per_second": 3.565,
"eval_steps_per_second": 0.891,
"step": 3000
},
{
"epoch": 1.38,
"mmlu_eval_accuracy": 0.46822206401347793,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.23529411764705882,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.09090909090909091,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.84,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.22580645161290322,
"mmlu_eval_accuracy_professional_law": 0.3352941176470588,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273,
"mmlu_eval_accuracy_virology": 0.6666666666666666,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.0331950397777807,
"step": 3000
},
{
"epoch": 1.38,
"learning_rate": 0.0002,
"loss": 0.6236,
"step": 3010
},
{
"epoch": 1.38,
"learning_rate": 0.0002,
"loss": 0.6147,
"step": 3020
},
{
"epoch": 1.39,
"learning_rate": 0.0002,
"loss": 0.6701,
"step": 3030
},
{
"epoch": 1.39,
"learning_rate": 0.0002,
"loss": 0.6524,
"step": 3040
},
{
"epoch": 1.4,
"learning_rate": 0.0002,
"loss": 0.6458,
"step": 3050
},
{
"epoch": 1.4,
"learning_rate": 0.0002,
"loss": 0.6275,
"step": 3060
},
{
"epoch": 1.41,
"learning_rate": 0.0002,
"loss": 0.5743,
"step": 3070
},
{
"epoch": 1.41,
"learning_rate": 0.0002,
"loss": 0.6244,
"step": 3080
},
{
"epoch": 1.42,
"learning_rate": 0.0002,
"loss": 0.6304,
"step": 3090
},
{
"epoch": 1.42,
"learning_rate": 0.0002,
"loss": 0.5913,
"step": 3100
},
{
"epoch": 1.43,
"learning_rate": 0.0002,
"loss": 0.5761,
"step": 3110
},
{
"epoch": 1.43,
"learning_rate": 0.0002,
"loss": 0.5795,
"step": 3120
},
{
"epoch": 1.44,
"learning_rate": 0.0002,
"loss": 0.6633,
"step": 3130
},
{
"epoch": 1.44,
"learning_rate": 0.0002,
"loss": 0.5692,
"step": 3140
},
{
"epoch": 1.44,
"learning_rate": 0.0002,
"loss": 0.6453,
"step": 3150
},
{
"epoch": 1.45,
"learning_rate": 0.0002,
"loss": 0.6315,
"step": 3160
},
{
"epoch": 1.45,
"learning_rate": 0.0002,
"loss": 0.6175,
"step": 3170
},
{
"epoch": 1.46,
"learning_rate": 0.0002,
"loss": 0.6131,
"step": 3180
},
{
"epoch": 1.46,
"learning_rate": 0.0002,
"loss": 0.5926,
"step": 3190
},
{
"epoch": 1.47,
"learning_rate": 0.0002,
"loss": 0.5722,
"step": 3200
},
{
"epoch": 1.47,
"eval_loss": 0.6387373208999634,
"eval_runtime": 280.1311,
"eval_samples_per_second": 3.57,
"eval_steps_per_second": 0.892,
"step": 3200
},
{
"epoch": 1.47,
"mmlu_eval_accuracy": 0.46230841034551773,
"mmlu_eval_accuracy_abstract_algebra": 0.45454545454545453,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.36363636363636365,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.3125,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.4375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.4186046511627907,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.5833333333333334,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.48484848484848486,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.16129032258064516,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5925925925925926,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.6111111111111112,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.1042568252541067,
"step": 3200
},
{
"epoch": 1.47,
"learning_rate": 0.0002,
"loss": 0.5951,
"step": 3210
},
{
"epoch": 1.48,
"learning_rate": 0.0002,
"loss": 0.6278,
"step": 3220
},
{
"epoch": 1.48,
"learning_rate": 0.0002,
"loss": 0.5928,
"step": 3230
},
{
"epoch": 1.49,
"learning_rate": 0.0002,
"loss": 0.5846,
"step": 3240
},
{
"epoch": 1.49,
"learning_rate": 0.0002,
"loss": 0.5802,
"step": 3250
},
{
"epoch": 1.49,
"learning_rate": 0.0002,
"loss": 0.6263,
"step": 3260
},
{
"epoch": 1.5,
"learning_rate": 0.0002,
"loss": 0.5526,
"step": 3270
},
{
"epoch": 1.5,
"learning_rate": 0.0002,
"loss": 0.6047,
"step": 3280
},
{
"epoch": 1.51,
"learning_rate": 0.0002,
"loss": 0.5702,
"step": 3290
},
{
"epoch": 1.51,
"learning_rate": 0.0002,
"loss": 0.633,
"step": 3300
},
{
"epoch": 1.52,
"learning_rate": 0.0002,
"loss": 0.6392,
"step": 3310
},
{
"epoch": 1.52,
"learning_rate": 0.0002,
"loss": 0.6377,
"step": 3320
},
{
"epoch": 1.53,
"learning_rate": 0.0002,
"loss": 0.6587,
"step": 3330
},
{
"epoch": 1.53,
"learning_rate": 0.0002,
"loss": 0.6079,
"step": 3340
},
{
"epoch": 1.54,
"learning_rate": 0.0002,
"loss": 0.576,
"step": 3350
},
{
"epoch": 1.54,
"learning_rate": 0.0002,
"loss": 0.6235,
"step": 3360
},
{
"epoch": 1.55,
"learning_rate": 0.0002,
"loss": 0.5736,
"step": 3370
},
{
"epoch": 1.55,
"learning_rate": 0.0002,
"loss": 0.5757,
"step": 3380
},
{
"epoch": 1.55,
"learning_rate": 0.0002,
"loss": 0.6272,
"step": 3390
},
{
"epoch": 1.56,
"learning_rate": 0.0002,
"loss": 0.6357,
"step": 3400
},
{
"epoch": 1.56,
"eval_loss": 0.6362296342849731,
"eval_runtime": 280.2373,
"eval_samples_per_second": 3.568,
"eval_steps_per_second": 0.892,
"step": 3400
},
{
"epoch": 1.56,
"mmlu_eval_accuracy": 0.4647485055195569,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.22580645161290322,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5925925925925926,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.6111111111111112,
"mmlu_eval_accuracy_world_religions": 0.7894736842105263,
"mmlu_loss": 1.1746269385901817,
"step": 3400
}
],
"max_steps": 5000,
"num_train_epochs": 3,
"total_flos": 9.748934432369787e+17,
"trial_name": null,
"trial_params": null
}