|
--- |
|
model-index: |
|
- name: Yuan-embedding-1.0 |
|
results: |
|
- dataset: |
|
config: default |
|
name: MTEB AFQMC (default) |
|
revision: None |
|
split: validation |
|
type: C-MTEB/AFQMC |
|
metrics: |
|
- type: cosine_pearson |
|
value: 56.398777687800596 |
|
- type: cosine_spearman |
|
value: 60.2976392017466 |
|
- type: manhattan_pearson |
|
value: 58.34432755369896 |
|
- type: manhattan_spearman |
|
value: 59.633715024557176 |
|
- type: euclidean_pearson |
|
value: 58.33199470250656 |
|
- type: euclidean_spearman |
|
value: 59.633393360323595 |
|
- type: main_score |
|
value: 60.2976392017466 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB ATEC (default) |
|
revision: None |
|
split: test |
|
type: C-MTEB/ATEC |
|
metrics: |
|
- type: cosine_pearson |
|
value: 56.418711941754694 |
|
- type: cosine_spearman |
|
value: 58.49782527525838 |
|
- type: manhattan_pearson |
|
value: 62.05335398720773 |
|
- type: manhattan_spearman |
|
value: 58.18176592298454 |
|
- type: euclidean_pearson |
|
value: 62.06479799788818 |
|
- type: euclidean_spearman |
|
value: 58.18182671971488 |
|
- type: main_score |
|
value: 58.49782527525838 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: zh |
|
name: MTEB AmazonReviewsClassification (zh) |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
split: test |
|
type: mteb/amazon_reviews_multi |
|
metrics: |
|
- type: accuracy |
|
value: 46.656000000000006 |
|
- type: accuracy_stderr |
|
value: 1.1704631561907444 |
|
- type: f1 |
|
value: 45.75911645865614 |
|
- type: f1_stderr |
|
value: 1.323301406018355 |
|
- type: main_score |
|
value: 46.656000000000006 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: zh |
|
name: MTEB AmazonReviewsClassification (zh) |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
split: validation |
|
type: mteb/amazon_reviews_multi |
|
metrics: |
|
- type: accuracy |
|
value: 45.84599999999999 |
|
- type: accuracy_stderr |
|
value: 1.0539468677310073 |
|
- type: f1 |
|
value: 45.03273670979488 |
|
- type: f1_stderr |
|
value: 1.00417269917164 |
|
- type: main_score |
|
value: 45.84599999999999 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB BQ (default) |
|
revision: None |
|
split: test |
|
type: C-MTEB/BQ |
|
metrics: |
|
- type: cosine_pearson |
|
value: 71.33099160181597 |
|
- type: cosine_spearman |
|
value: 73.06963287952199 |
|
- type: manhattan_pearson |
|
value: 70.65314181752566 |
|
- type: manhattan_spearman |
|
value: 72.34604440078336 |
|
- type: euclidean_pearson |
|
value: 70.67624292501411 |
|
- type: euclidean_spearman |
|
value: 72.3597691712343 |
|
- type: main_score |
|
value: 73.06963287952199 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB CLSClusteringP2P (default) |
|
revision: None |
|
split: test |
|
type: C-MTEB/CLSClusteringP2P |
|
metrics: |
|
- type: v_measure |
|
value: 53.79921861868626 |
|
- type: v_measure_std |
|
value: 2.073016548125077 |
|
- type: main_score |
|
value: 53.79921861868626 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB CLSClusteringS2S (default) |
|
revision: None |
|
split: test |
|
type: C-MTEB/CLSClusteringS2S |
|
metrics: |
|
- type: v_measure |
|
value: 46.22496957569903 |
|
- type: v_measure_std |
|
value: 1.4660184854965337 |
|
- type: main_score |
|
value: 46.22496957569903 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB CMedQAv1-reranking (default) |
|
revision: None |
|
split: test |
|
type: C-MTEB/CMedQAv1-reranking |
|
metrics: |
|
- type: map |
|
value: 90.00883554654739 |
|
- type: mrr |
|
value: 92.02547619047618 |
|
- type: main_score |
|
value: 90.00883554654739 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB CMedQAv2-reranking (default) |
|
revision: None |
|
split: test |
|
type: C-MTEB/CMedQAv2-reranking |
|
metrics: |
|
- type: map |
|
value: 92.47561424216632 |
|
- type: mrr |
|
value: 94.60039682539681 |
|
- type: main_score |
|
value: 92.47561424216632 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB CmedqaRetrieval (default) |
|
revision: None |
|
split: dev |
|
type: C-MTEB/CmedqaRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 29.935000000000002 |
|
- type: map_at_10 |
|
value: 44.143 |
|
- type: map_at_100 |
|
value: 45.999 |
|
- type: map_at_1000 |
|
value: 46.084 |
|
- type: map_at_3 |
|
value: 39.445 |
|
- type: map_at_5 |
|
value: 42.218 |
|
- type: mrr_at_1 |
|
value: 44.711 |
|
- type: mrr_at_10 |
|
value: 53.88699999999999 |
|
- type: mrr_at_100 |
|
value: 54.813 |
|
- type: mrr_at_1000 |
|
value: 54.834 |
|
- type: mrr_at_3 |
|
value: 51.1 |
|
- type: mrr_at_5 |
|
value: 52.827 |
|
- type: ndcg_at_1 |
|
value: 44.711 |
|
- type: ndcg_at_10 |
|
value: 51.471999999999994 |
|
- type: ndcg_at_100 |
|
value: 58.362 |
|
- type: ndcg_at_1000 |
|
value: 59.607 |
|
- type: ndcg_at_3 |
|
value: 45.558 |
|
- type: ndcg_at_5 |
|
value: 48.345 |
|
- type: precision_at_1 |
|
value: 44.711 |
|
- type: precision_at_10 |
|
value: 11.1 |
|
- type: precision_at_100 |
|
value: 1.6650000000000003 |
|
- type: precision_at_1000 |
|
value: 0.184 |
|
- type: precision_at_3 |
|
value: 25.306 |
|
- type: precision_at_5 |
|
value: 18.404999999999998 |
|
- type: recall_at_1 |
|
value: 29.935000000000002 |
|
- type: recall_at_10 |
|
value: 63.366 |
|
- type: recall_at_100 |
|
value: 91.375 |
|
- type: recall_at_1000 |
|
value: 99.167 |
|
- type: recall_at_3 |
|
value: 45.888 |
|
- type: recall_at_5 |
|
value: 54.169 |
|
- type: main_score |
|
value: 51.471999999999994 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB Cmnli (default) |
|
revision: None |
|
split: validation |
|
type: C-MTEB/CMNLI |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 80.3968731208659 |
|
- type: cos_sim_accuracy_threshold |
|
value: 86.61384582519531 |
|
- type: cos_sim_ap |
|
value: 88.21894124132636 |
|
- type: cos_sim_f1 |
|
value: 81.67308750687947 |
|
- type: cos_sim_f1_threshold |
|
value: 86.04017496109009 |
|
- type: cos_sim_precision |
|
value: 77.1630615640599 |
|
- type: cos_sim_recall |
|
value: 86.7430441898527 |
|
- type: dot_accuracy |
|
value: 67.7931449188214 |
|
- type: dot_accuracy_threshold |
|
value: 92027.47802734375 |
|
- type: dot_ap |
|
value: 75.73048600318765 |
|
- type: dot_f1 |
|
value: 71.64554512914772 |
|
- type: dot_f1_threshold |
|
value: 83535.70556640625 |
|
- type: dot_precision |
|
value: 61.1056105610561 |
|
- type: dot_recall |
|
value: 86.57937806873977 |
|
- type: euclidean_accuracy |
|
value: 78.52074564040889 |
|
- type: euclidean_accuracy_threshold |
|
value: 1688.486671447754 |
|
- type: euclidean_ap |
|
value: 86.40643721988414 |
|
- type: euclidean_f1 |
|
value: 79.97822536744692 |
|
- type: euclidean_f1_threshold |
|
value: 1748.1914520263672 |
|
- type: euclidean_precision |
|
value: 74.83700081499592 |
|
- type: euclidean_recall |
|
value: 85.87795183539865 |
|
- type: manhattan_accuracy |
|
value: 78.59290438965725 |
|
- type: manhattan_accuracy_threshold |
|
value: 57066.162109375 |
|
- type: manhattan_ap |
|
value: 86.38300352696045 |
|
- type: manhattan_f1 |
|
value: 79.84587391630097 |
|
- type: manhattan_f1_threshold |
|
value: 59686.376953125 |
|
- type: manhattan_precision |
|
value: 73.62810896170548 |
|
- type: manhattan_recall |
|
value: 87.21066167874679 |
|
- type: max_accuracy |
|
value: 80.3968731208659 |
|
- type: max_ap |
|
value: 88.21894124132636 |
|
- type: max_f1 |
|
value: 81.67308750687947 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: default |
|
name: MTEB CovidRetrieval (default) |
|
revision: None |
|
split: dev |
|
type: C-MTEB/CovidRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 85.485 |
|
- type: map_at_10 |
|
value: 91.135 |
|
- type: map_at_100 |
|
value: 91.16199999999999 |
|
- type: map_at_1000 |
|
value: 91.16300000000001 |
|
- type: map_at_3 |
|
value: 90.499 |
|
- type: map_at_5 |
|
value: 90.91 |
|
- type: mrr_at_1 |
|
value: 85.88 |
|
- type: mrr_at_10 |
|
value: 91.133 |
|
- type: mrr_at_100 |
|
value: 91.16 |
|
- type: mrr_at_1000 |
|
value: 91.161 |
|
- type: mrr_at_3 |
|
value: 90.551 |
|
- type: mrr_at_5 |
|
value: 90.904 |
|
- type: ndcg_at_1 |
|
value: 85.88 |
|
- type: ndcg_at_10 |
|
value: 93.163 |
|
- type: ndcg_at_100 |
|
value: 93.282 |
|
- type: ndcg_at_1000 |
|
value: 93.309 |
|
- type: ndcg_at_3 |
|
value: 91.943 |
|
- type: ndcg_at_5 |
|
value: 92.637 |
|
- type: precision_at_1 |
|
value: 85.88 |
|
- type: precision_at_10 |
|
value: 10.032 |
|
- type: precision_at_100 |
|
value: 1.008 |
|
- type: precision_at_1000 |
|
value: 0.101 |
|
- type: precision_at_3 |
|
value: 32.315 |
|
- type: precision_at_5 |
|
value: 19.747 |
|
- type: recall_at_1 |
|
value: 85.485 |
|
- type: recall_at_10 |
|
value: 99.262 |
|
- type: recall_at_100 |
|
value: 99.789 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_3 |
|
value: 95.96900000000001 |
|
- type: recall_at_5 |
|
value: 97.682 |
|
- type: main_score |
|
value: 93.163 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB DuRetrieval (default) |
|
revision: None |
|
split: dev |
|
type: C-MTEB/DuRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.29 |
|
- type: map_at_10 |
|
value: 82.832 |
|
- type: map_at_100 |
|
value: 85.482 |
|
- type: map_at_1000 |
|
value: 85.52 |
|
- type: map_at_3 |
|
value: 57.964000000000006 |
|
- type: map_at_5 |
|
value: 72.962 |
|
- type: mrr_at_1 |
|
value: 92.35 |
|
- type: mrr_at_10 |
|
value: 94.77499999999999 |
|
- type: mrr_at_100 |
|
value: 94.825 |
|
- type: mrr_at_1000 |
|
value: 94.827 |
|
- type: mrr_at_3 |
|
value: 94.50800000000001 |
|
- type: mrr_at_5 |
|
value: 94.688 |
|
- type: ndcg_at_1 |
|
value: 92.35 |
|
- type: ndcg_at_10 |
|
value: 89.432 |
|
- type: ndcg_at_100 |
|
value: 91.813 |
|
- type: ndcg_at_1000 |
|
value: 92.12 |
|
- type: ndcg_at_3 |
|
value: 88.804 |
|
- type: ndcg_at_5 |
|
value: 87.681 |
|
- type: precision_at_1 |
|
value: 92.35 |
|
- type: precision_at_10 |
|
value: 42.32 |
|
- type: precision_at_100 |
|
value: 4.812 |
|
- type: precision_at_1000 |
|
value: 0.48900000000000005 |
|
- type: precision_at_3 |
|
value: 79.367 |
|
- type: precision_at_5 |
|
value: 66.86999999999999 |
|
- type: recall_at_1 |
|
value: 27.29 |
|
- type: recall_at_10 |
|
value: 90.093 |
|
- type: recall_at_100 |
|
value: 97.916 |
|
- type: recall_at_1000 |
|
value: 99.40299999999999 |
|
- type: recall_at_3 |
|
value: 59.816 |
|
- type: recall_at_5 |
|
value: 76.889 |
|
- type: main_score |
|
value: 89.432 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB EcomRetrieval (default) |
|
revision: None |
|
split: dev |
|
type: C-MTEB/EcomRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 55.2 |
|
- type: map_at_10 |
|
value: 65.767 |
|
- type: map_at_100 |
|
value: 66.208 |
|
- type: map_at_1000 |
|
value: 66.219 |
|
- type: map_at_3 |
|
value: 63.1 |
|
- type: map_at_5 |
|
value: 64.865 |
|
- type: mrr_at_1 |
|
value: 55.2 |
|
- type: mrr_at_10 |
|
value: 65.767 |
|
- type: mrr_at_100 |
|
value: 66.208 |
|
- type: mrr_at_1000 |
|
value: 66.219 |
|
- type: mrr_at_3 |
|
value: 63.1 |
|
- type: mrr_at_5 |
|
value: 64.865 |
|
- type: ndcg_at_1 |
|
value: 55.2 |
|
- type: ndcg_at_10 |
|
value: 70.875 |
|
- type: ndcg_at_100 |
|
value: 72.931 |
|
- type: ndcg_at_1000 |
|
value: 73.2 |
|
- type: ndcg_at_3 |
|
value: 65.526 |
|
- type: ndcg_at_5 |
|
value: 68.681 |
|
- type: precision_at_1 |
|
value: 55.2 |
|
- type: precision_at_10 |
|
value: 8.690000000000001 |
|
- type: precision_at_100 |
|
value: 0.963 |
|
- type: precision_at_1000 |
|
value: 0.098 |
|
- type: precision_at_3 |
|
value: 24.166999999999998 |
|
- type: precision_at_5 |
|
value: 16.02 |
|
- type: recall_at_1 |
|
value: 55.2 |
|
- type: recall_at_10 |
|
value: 86.9 |
|
- type: recall_at_100 |
|
value: 96.3 |
|
- type: recall_at_1000 |
|
value: 98.4 |
|
- type: recall_at_3 |
|
value: 72.5 |
|
- type: recall_at_5 |
|
value: 80.10000000000001 |
|
- type: main_score |
|
value: 70.875 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB IFlyTek (default) |
|
revision: None |
|
split: validation |
|
type: C-MTEB/IFlyTek-classification |
|
metrics: |
|
- type: accuracy |
|
value: 46.95652173913043 |
|
- type: accuracy_stderr |
|
value: 0.8816372193041417 |
|
- type: f1 |
|
value: 38.870262239396496 |
|
- type: f1_stderr |
|
value: 1.1248427890133785 |
|
- type: main_score |
|
value: 46.95652173913043 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB JDReview (default) |
|
revision: None |
|
split: test |
|
type: C-MTEB/JDReview-classification |
|
metrics: |
|
- type: accuracy |
|
value: 87.18574108818011 |
|
- type: accuracy_stderr |
|
value: 1.828763099528331 |
|
- type: ap |
|
value: 56.516251295719414 |
|
- type: ap_stderr |
|
value: 3.3789918068717895 |
|
- type: f1 |
|
value: 82.04209146803106 |
|
- type: f1_stderr |
|
value: 2.005027201503808 |
|
- type: main_score |
|
value: 87.18574108818011 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB LCQMC (default) |
|
revision: None |
|
split: test |
|
type: C-MTEB/LCQMC |
|
metrics: |
|
- type: cosine_pearson |
|
value: 72.67112275922743 |
|
- type: cosine_spearman |
|
value: 78.44376213964316 |
|
- type: manhattan_pearson |
|
value: 77.51766838932976 |
|
- type: manhattan_spearman |
|
value: 78.02885255071602 |
|
- type: euclidean_pearson |
|
value: 77.5292348074114 |
|
- type: euclidean_spearman |
|
value: 78.04277103380235 |
|
- type: main_score |
|
value: 78.44376213964316 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB MMarcoReranking (default) |
|
revision: None |
|
split: dev |
|
type: C-MTEB/Mmarco-reranking |
|
metrics: |
|
- type: map |
|
value: 37.021133625346174 |
|
- type: mrr |
|
value: 35.81428571428572 |
|
- type: main_score |
|
value: 37.021133625346174 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB MMarcoRetrieval (default) |
|
revision: None |
|
split: dev |
|
type: C-MTEB/MMarcoRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 69.624 |
|
- type: map_at_10 |
|
value: 78.764 |
|
- type: map_at_100 |
|
value: 79.038 |
|
- type: map_at_1000 |
|
value: 79.042 |
|
- type: map_at_3 |
|
value: 76.846 |
|
- type: map_at_5 |
|
value: 78.106 |
|
- type: mrr_at_1 |
|
value: 71.905 |
|
- type: mrr_at_10 |
|
value: 79.268 |
|
- type: mrr_at_100 |
|
value: 79.508 |
|
- type: mrr_at_1000 |
|
value: 79.512 |
|
- type: mrr_at_3 |
|
value: 77.60000000000001 |
|
- type: mrr_at_5 |
|
value: 78.701 |
|
- type: ndcg_at_1 |
|
value: 71.905 |
|
- type: ndcg_at_10 |
|
value: 82.414 |
|
- type: ndcg_at_100 |
|
value: 83.59 |
|
- type: ndcg_at_1000 |
|
value: 83.708 |
|
- type: ndcg_at_3 |
|
value: 78.803 |
|
- type: ndcg_at_5 |
|
value: 80.94 |
|
- type: precision_at_1 |
|
value: 71.905 |
|
- type: precision_at_10 |
|
value: 9.901 |
|
- type: precision_at_100 |
|
value: 1.048 |
|
- type: precision_at_1000 |
|
value: 0.106 |
|
- type: precision_at_3 |
|
value: 29.479 |
|
- type: precision_at_5 |
|
value: 18.828 |
|
- type: recall_at_1 |
|
value: 69.624 |
|
- type: recall_at_10 |
|
value: 93.149 |
|
- type: recall_at_100 |
|
value: 98.367 |
|
- type: recall_at_1000 |
|
value: 99.29299999999999 |
|
- type: recall_at_3 |
|
value: 83.67599999999999 |
|
- type: recall_at_5 |
|
value: 88.752 |
|
- type: main_score |
|
value: 82.414 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: zh-CN |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
split: test |
|
type: mteb/amazon_massive_intent |
|
metrics: |
|
- type: accuracy |
|
value: 77.36045729657029 |
|
- type: accuracy_stderr |
|
value: 0.8944498935111289 |
|
- type: f1 |
|
value: 73.73485209304225 |
|
- type: f1_stderr |
|
value: 0.8615191738484445 |
|
- type: main_score |
|
value: 77.36045729657029 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: zh-CN |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
split: validation |
|
type: mteb/amazon_massive_intent |
|
metrics: |
|
- type: accuracy |
|
value: 78.16035415641909 |
|
- type: accuracy_stderr |
|
value: 0.7514724220154535 |
|
- type: f1 |
|
value: 75.32402452596266 |
|
- type: f1_stderr |
|
value: 0.5969737694527888 |
|
- type: main_score |
|
value: 78.16035415641909 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: zh-CN |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
split: test |
|
type: mteb/amazon_massive_scenario |
|
metrics: |
|
- type: accuracy |
|
value: 83.31203765971755 |
|
- type: accuracy_stderr |
|
value: 1.1063564012537301 |
|
- type: f1 |
|
value: 82.81655735858999 |
|
- type: f1_stderr |
|
value: 0.9643568609098954 |
|
- type: main_score |
|
value: 83.31203765971755 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: zh-CN |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
split: validation |
|
type: mteb/amazon_massive_scenario |
|
metrics: |
|
- type: accuracy |
|
value: 83.11362518445647 |
|
- type: accuracy_stderr |
|
value: 1.252141689154366 |
|
- type: f1 |
|
value: 82.56555569957769 |
|
- type: f1_stderr |
|
value: 0.858322314243248 |
|
- type: main_score |
|
value: 83.11362518445647 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB MedicalRetrieval (default) |
|
revision: None |
|
split: dev |
|
type: C-MTEB/MedicalRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 63.1 |
|
- type: map_at_10 |
|
value: 70.816 |
|
- type: map_at_100 |
|
value: 71.368 |
|
- type: map_at_1000 |
|
value: 71.379 |
|
- type: map_at_3 |
|
value: 69.033 |
|
- type: map_at_5 |
|
value: 70.028 |
|
- type: mrr_at_1 |
|
value: 63.4 |
|
- type: mrr_at_10 |
|
value: 70.98400000000001 |
|
- type: mrr_at_100 |
|
value: 71.538 |
|
- type: mrr_at_1000 |
|
value: 71.548 |
|
- type: mrr_at_3 |
|
value: 69.19999999999999 |
|
- type: mrr_at_5 |
|
value: 70.195 |
|
- type: ndcg_at_1 |
|
value: 63.1 |
|
- type: ndcg_at_10 |
|
value: 74.665 |
|
- type: ndcg_at_100 |
|
value: 77.16199999999999 |
|
- type: ndcg_at_1000 |
|
value: 77.408 |
|
- type: ndcg_at_3 |
|
value: 70.952 |
|
- type: ndcg_at_5 |
|
value: 72.776 |
|
- type: precision_at_1 |
|
value: 63.1 |
|
- type: precision_at_10 |
|
value: 8.68 |
|
- type: precision_at_100 |
|
value: 0.9809999999999999 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 25.5 |
|
- type: precision_at_5 |
|
value: 16.2 |
|
- type: recall_at_1 |
|
value: 63.1 |
|
- type: recall_at_10 |
|
value: 86.8 |
|
- type: recall_at_100 |
|
value: 98.1 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_3 |
|
value: 76.5 |
|
- type: recall_at_5 |
|
value: 81.0 |
|
- type: main_score |
|
value: 74.665 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB MultilingualSentiment (default) |
|
revision: None |
|
split: validation |
|
type: C-MTEB/MultilingualSentiment-classification |
|
metrics: |
|
- type: accuracy |
|
value: 75.98 |
|
- type: accuracy_stderr |
|
value: 0.8634813257969153 |
|
- type: f1 |
|
value: 75.98312901227456 |
|
- type: f1_stderr |
|
value: 0.9813231777702479 |
|
- type: main_score |
|
value: 75.98 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB Ocnli (default) |
|
revision: None |
|
split: validation |
|
type: C-MTEB/OCNLI |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 80.02165674066053 |
|
- type: cos_sim_accuracy_threshold |
|
value: 84.70024466514587 |
|
- type: cos_sim_ap |
|
value: 84.5948682253982 |
|
- type: cos_sim_f1 |
|
value: 80.84291187739463 |
|
- type: cos_sim_f1_threshold |
|
value: 82.62853622436523 |
|
- type: cos_sim_precision |
|
value: 73.97020157756354 |
|
- type: cos_sim_recall |
|
value: 89.1235480464625 |
|
- type: dot_accuracy |
|
value: 71.52138603140227 |
|
- type: dot_accuracy_threshold |
|
value: 84206.94580078125 |
|
- type: dot_ap |
|
value: 77.69986172282461 |
|
- type: dot_f1 |
|
value: 74.76467951591216 |
|
- type: dot_f1_threshold |
|
value: 78842.08984375 |
|
- type: dot_precision |
|
value: 64.95327102803739 |
|
- type: dot_recall |
|
value: 88.0675818373812 |
|
- type: euclidean_accuracy |
|
value: 76.01515971846237 |
|
- type: euclidean_accuracy_threshold |
|
value: 1818.9674377441406 |
|
- type: euclidean_ap |
|
value: 80.84369691331835 |
|
- type: euclidean_f1 |
|
value: 78.08988764044943 |
|
- type: euclidean_f1_threshold |
|
value: 1922.1363067626953 |
|
- type: euclidean_precision |
|
value: 70.14297729184187 |
|
- type: euclidean_recall |
|
value: 88.0675818373812 |
|
- type: manhattan_accuracy |
|
value: 76.12344342176502 |
|
- type: manhattan_accuracy_threshold |
|
value: 61934.478759765625 |
|
- type: manhattan_ap |
|
value: 80.8051823205177 |
|
- type: manhattan_f1 |
|
value: 78.21596244131456 |
|
- type: manhattan_f1_threshold |
|
value: 64840.447998046875 |
|
- type: manhattan_precision |
|
value: 70.41420118343196 |
|
- type: manhattan_recall |
|
value: 87.96198521647307 |
|
- type: max_accuracy |
|
value: 80.02165674066053 |
|
- type: max_ap |
|
value: 84.5948682253982 |
|
- type: max_f1 |
|
value: 80.84291187739463 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: default |
|
name: MTEB OnlineShopping (default) |
|
revision: None |
|
split: test |
|
type: C-MTEB/OnlineShopping-classification |
|
metrics: |
|
- type: accuracy |
|
value: 93.63 |
|
- type: accuracy_stderr |
|
value: 0.7253275122315392 |
|
- type: ap |
|
value: 91.66092551327398 |
|
- type: ap_stderr |
|
value: 0.9661774073521741 |
|
- type: f1 |
|
value: 93.61696896914624 |
|
- type: f1_stderr |
|
value: 0.7232416235078093 |
|
- type: main_score |
|
value: 93.63 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB PAWSX (default) |
|
revision: None |
|
split: test |
|
type: C-MTEB/PAWSX |
|
metrics: |
|
- type: cosine_pearson |
|
value: 27.420084312732477 |
|
- type: cosine_spearman |
|
value: 36.615019324915316 |
|
- type: manhattan_pearson |
|
value: 35.38814491527626 |
|
- type: manhattan_spearman |
|
value: 35.989020517540105 |
|
- type: euclidean_pearson |
|
value: 35.322828019800475 |
|
- type: euclidean_spearman |
|
value: 35.93118948093057 |
|
- type: main_score |
|
value: 36.615019324915316 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB QBQTC (default) |
|
revision: None |
|
split: test |
|
type: C-MTEB/QBQTC |
|
metrics: |
|
- type: cosine_pearson |
|
value: 36.51779732355864 |
|
- type: cosine_spearman |
|
value: 38.35615142712016 |
|
- type: manhattan_pearson |
|
value: 31.00096996824444 |
|
- type: manhattan_spearman |
|
value: 35.22782463612116 |
|
- type: euclidean_pearson |
|
value: 31.04604995563808 |
|
- type: euclidean_spearman |
|
value: 35.271420992011485 |
|
- type: main_score |
|
value: 38.35615142712016 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: zh |
|
name: MTEB STS22 (zh) |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 60.76376961662733 |
|
- type: cosine_spearman |
|
value: 65.93112312064913 |
|
- type: manhattan_pearson |
|
value: 60.18998639945854 |
|
- type: manhattan_spearman |
|
value: 64.37697612695015 |
|
- type: euclidean_pearson |
|
value: 60.287759656277814 |
|
- type: euclidean_spearman |
|
value: 64.37685757691955 |
|
- type: main_score |
|
value: 65.93112312064913 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STSB (default) |
|
revision: None |
|
split: test |
|
type: C-MTEB/STSB |
|
metrics: |
|
- type: cosine_pearson |
|
value: 79.6320389543562 |
|
- type: cosine_spearman |
|
value: 81.9230633773663 |
|
- type: manhattan_pearson |
|
value: 80.20746913195181 |
|
- type: manhattan_spearman |
|
value: 80.43150657863002 |
|
- type: euclidean_pearson |
|
value: 80.1796408157508 |
|
- type: euclidean_spearman |
|
value: 80.42930201788549 |
|
- type: main_score |
|
value: 81.9230633773663 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB T2Reranking (default) |
|
revision: None |
|
split: dev |
|
type: C-MTEB/T2Reranking |
|
metrics: |
|
- type: map |
|
value: 66.67836204644267 |
|
- type: mrr |
|
value: 76.1707222383424 |
|
- type: main_score |
|
value: 66.67836204644267 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB T2Retrieval (default) |
|
revision: None |
|
split: dev |
|
type: C-MTEB/T2Retrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.015 |
|
- type: map_at_10 |
|
value: 78.281 |
|
- type: map_at_100 |
|
value: 81.89699999999999 |
|
- type: map_at_1000 |
|
value: 81.95599999999999 |
|
- type: map_at_3 |
|
value: 55.117000000000004 |
|
- type: map_at_5 |
|
value: 67.647 |
|
- type: mrr_at_1 |
|
value: 90.496 |
|
- type: mrr_at_10 |
|
value: 93.132 |
|
- type: mrr_at_100 |
|
value: 93.207 |
|
- type: mrr_at_1000 |
|
value: 93.209 |
|
- type: mrr_at_3 |
|
value: 92.714 |
|
- type: mrr_at_5 |
|
value: 93.0 |
|
- type: ndcg_at_1 |
|
value: 90.496 |
|
- type: ndcg_at_10 |
|
value: 85.71600000000001 |
|
- type: ndcg_at_100 |
|
value: 89.164 |
|
- type: ndcg_at_1000 |
|
value: 89.71000000000001 |
|
- type: ndcg_at_3 |
|
value: 86.876 |
|
- type: ndcg_at_5 |
|
value: 85.607 |
|
- type: precision_at_1 |
|
value: 90.496 |
|
- type: precision_at_10 |
|
value: 42.398 |
|
- type: precision_at_100 |
|
value: 5.031 |
|
- type: precision_at_1000 |
|
value: 0.516 |
|
- type: precision_at_3 |
|
value: 75.729 |
|
- type: precision_at_5 |
|
value: 63.522 |
|
- type: recall_at_1 |
|
value: 28.015 |
|
- type: recall_at_10 |
|
value: 84.83000000000001 |
|
- type: recall_at_100 |
|
value: 95.964 |
|
- type: recall_at_1000 |
|
value: 98.67399999999999 |
|
- type: recall_at_3 |
|
value: 56.898 |
|
- type: recall_at_5 |
|
value: 71.163 |
|
- type: main_score |
|
value: 85.71600000000001 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB TNews (default) |
|
revision: None |
|
split: validation |
|
type: C-MTEB/TNews-classification |
|
metrics: |
|
- type: accuracy |
|
value: 51.702999999999996 |
|
- type: accuracy_stderr |
|
value: 0.8183526134863877 |
|
- type: f1 |
|
value: 50.35330734766769 |
|
- type: f1_stderr |
|
value: 0.740275098366631 |
|
- type: main_score |
|
value: 51.702999999999996 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB ThuNewsClusteringP2P (default) |
|
revision: None |
|
split: test |
|
type: C-MTEB/ThuNewsClusteringP2P |
|
metrics: |
|
- type: v_measure |
|
value: 72.78709391223538 |
|
- type: v_measure_std |
|
value: 1.5927130767880417 |
|
- type: main_score |
|
value: 72.78709391223538 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB ThuNewsClusteringS2S (default) |
|
revision: None |
|
split: test |
|
type: C-MTEB/ThuNewsClusteringS2S |
|
metrics: |
|
- type: v_measure |
|
value: 66.80392174700211 |
|
- type: v_measure_std |
|
value: 1.845756306548485 |
|
- type: main_score |
|
value: 66.80392174700211 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB VideoRetrieval (default) |
|
revision: None |
|
split: dev |
|
type: C-MTEB/VideoRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 65.5 |
|
- type: map_at_10 |
|
value: 75.38 |
|
- type: map_at_100 |
|
value: 75.756 |
|
- type: map_at_1000 |
|
value: 75.75800000000001 |
|
- type: map_at_3 |
|
value: 73.8 |
|
- type: map_at_5 |
|
value: 74.895 |
|
- type: mrr_at_1 |
|
value: 65.5 |
|
- type: mrr_at_10 |
|
value: 75.38 |
|
- type: mrr_at_100 |
|
value: 75.756 |
|
- type: mrr_at_1000 |
|
value: 75.75800000000001 |
|
- type: mrr_at_3 |
|
value: 73.8 |
|
- type: mrr_at_5 |
|
value: 74.895 |
|
- type: ndcg_at_1 |
|
value: 65.5 |
|
- type: ndcg_at_10 |
|
value: 79.572 |
|
- type: ndcg_at_100 |
|
value: 81.17699999999999 |
|
- type: ndcg_at_1000 |
|
value: 81.227 |
|
- type: ndcg_at_3 |
|
value: 76.44999999999999 |
|
- type: ndcg_at_5 |
|
value: 78.404 |
|
- type: precision_at_1 |
|
value: 65.5 |
|
- type: precision_at_10 |
|
value: 9.24 |
|
- type: precision_at_100 |
|
value: 0.9939999999999999 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 28.033 |
|
- type: precision_at_5 |
|
value: 17.76 |
|
- type: recall_at_1 |
|
value: 65.5 |
|
- type: recall_at_10 |
|
value: 92.4 |
|
- type: recall_at_100 |
|
value: 99.4 |
|
- type: recall_at_1000 |
|
value: 99.8 |
|
- type: recall_at_3 |
|
value: 84.1 |
|
- type: recall_at_5 |
|
value: 88.8 |
|
- type: main_score |
|
value: 79.572 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB Waimai (default) |
|
revision: None |
|
split: test |
|
type: C-MTEB/waimai-classification |
|
metrics: |
|
- type: accuracy |
|
value: 88.70000000000002 |
|
- type: accuracy_stderr |
|
value: 1.1713240371477067 |
|
- type: ap |
|
value: 73.95357766936226 |
|
- type: ap_stderr |
|
value: 2.3258932220157638 |
|
- type: f1 |
|
value: 87.27541455081986 |
|
- type: f1_stderr |
|
value: 1.185968184225313 |
|
- type: main_score |
|
value: 88.70000000000002 |
|
task: |
|
type: Classification |
|
tags: |
|
- mteb |
|
--- |
|
## Yuan-embedding-1.0 |
|
|
|
Yuan-embedding-1.0 是专门为中文文本检索任务设计的嵌入模型。 |
|
在xiaobu模型结构(bert-large结构)基础上, 采用全新的数据集构建、生成与清洗方法, 结合二阶段微调实现Retrieval任务的精度领先(Hugging Face C-MTEB榜单 [1])。 |
|
其中, 正负例样本采用源2.0-M32(Yuan2.0-M32 [2])大模型进行生成。主要工作如下: |
|
|
|
- 在Hard negative sampling中,使用Rerank模型(bge-reranker-large [3])进行数据排序筛选 |
|
|
|
- 通过(Yuan2.0-M32大模型)迭代生成新query、corpus |
|
|
|
- 采用MRL方法进行模型微调训练 |
|
|
|
|
|
## Usage |
|
|
|
```bash |
|
pip install -U sentence-transformers==3.1.1 |
|
``` |
|
|
|
使用示例: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
model = SentenceTransformer("IEIYuan/Yuan-embedding-1.0") |
|
sentences = [ |
|
"这是一个样例-1", |
|
"这是一个样例-2", |
|
] |
|
embeddings = model.encode(sentences) |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities) |
|
``` |
|
|
|
## Reference |
|
|
|
1. https://huggingface.co/spaces/mteb/leaderboard |
|
2. https://huggingface.co/IEITYuan/Yuan2-M32 |
|
3. https://huggingface.co/BAAI/bge-reranker-large |