IGNF
/

AGarioud's picture
Update README.md
572749c verified
|
raw
history blame
23.1 kB
metadata
license: etalab-2.0
tags:
  - semantic segmentation
  - pytorch
  - landcover
model-index:
  - name: FLAIR-HUB_LC-A_convnextv2base-unet
    results:
      - task:
          type: semantic-segmentation
        dataset:
          name: IGNF/FLAIR-HUB/
          type: earth-observation-dataset
        metrics:
          - name: mIoU
            type: mIoU
            value: 64.16
          - name: Overall Accuracy
            type: OA
            value: 77.17
          - name: IoU building
            type: IoU
            value: 84.15
          - name: IoU greenhouse
            type: IoU
            value: 76.22
          - name: IoU swimming pool
            type: IoU
            value: 61.59
          - name: IoU impervious surface
            type: IoU
            value: 75.24
          - name: IoU pervious surface
            type: IoU
            value: 56.17
          - name: IoU bare soil
            type: IoU
            value: 63.02
          - name: IoU water
            type: IoU
            value: 88.96
          - name: IoU snow
            type: IoU
            value: 72.54
          - name: IoU herbaceous vegetation
            type: IoU
            value: 54.22
          - name: IoU agricultural land
            type: IoU
            value: 57.09
          - name: IoU plowed land
            type: IoU
            value: 36.27
          - name: IoU vineyard
            type: IoU
            value: 77.47
          - name: IoU deciduous
            type: IoU
            value: 71.33
          - name: IoU coniferous
            type: IoU
            value: 60.43
          - name: IoU brushwood
            type: IoU
            value: 29.3
pipeline_tag: image-segmentation

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-A_convnextv2base-unet

  • Encoder: swin_base_patch4_window12_384
  • Decoder: upernet
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    64.16% 77.17% 76.92% 77.58% 76.59%
  • Params.: 89.4

General Informations


Training Config Hyperparameters

- Model architecture: swin_base_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
    - AERIAL_RGBI:
        mean: [106.59, 105.66, 111.35]
        std:  [39.78, 52.23, 45.62]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 64.13%
Overall Accuracy 77.45%
F-score 76.88%
Precision 77.36%
Recall 76.89%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 84.15 91.39 91.15 91.64
greenhouse 76.22 86.50 84.11 89.04
swimming pool 60.03 75.02 76.08 73.99
impervious surface 75.24 85.87 86.75 85.01
pervious surface 56.17 71.94 69.87 74.14
bare soil 63.02 77.31 74.19 80.71
water 88.96 94.16 94.98 93.35
snow 72.54 84.08 97.77 73.76
herbaceous vegetation 54.22 70.31 71.67 69.01
agricultural land 57.09 72.68 69.75 75.87
plowed land 36.27 53.23 52.71 53.77
vineyard 77.47 87.30 85.34 89.36
deciduous 71.33 83.26 81.90 84.67
coniferous 60.43 75.33 80.13 71.08
brushwood 29.30 45.33 47.34 43.48

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.13140/RG.2.2.30183.73128/1},
  url = {https://arxiv.org/pdf/2211.12979.pdf},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.13140/RG.2.2.30183.73128/1