IGNF
/

AGarioud's picture
Update README.md
93d87b7 verified
metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
  - semantic segmentation
  - pytorch
  - landcover
library_name: pytorch
model-index:
  - name: FLAIR-HUB_LC-A_swintiny-upernet
    results:
      - task:
          type: semantic-segmentation
        dataset:
          name: IGNF/FLAIR-HUB/
          type: earth-observation-dataset
        metrics:
          - type: mIoU
            value: 62.159
            name: mIoU
          - type: OA
            value: 76.242
            name: Overall Accuracy
          - type: IoU
            value: 82.367
            name: IoU building
          - type: IoU
            value: 72.114
            name: IoU greenhouse
          - type: IoU
            value: 61.59
            name: IoU swimming pool
          - type: IoU
            value: 74.269
            name: IoU impervious surface
          - type: IoU
            value: 55.749
            name: IoU pervious surface
          - type: IoU
            value: 60.933
            name: IoU bare soil
          - type: IoU
            value: 88.453
            name: IoU water
          - type: IoU
            value: 64.387
            name: IoU snow
          - type: IoU
            value: 52.594
            name: IoU herbaceous vegetation
          - type: IoU
            value: 55.365
            name: IoU agricultural land
          - type: IoU
            value: 30.807
            name: IoU plowed land
          - type: IoU
            value: 76.441
            name: IoU vineyard
          - type: IoU
            value: 70.946
            name: IoU deciduous
          - type: IoU
            value: 60.394
            name: IoU coniferous
          - type: IoU
            value: 28.887
            name: IoU brushwood

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-A_swintiny-upernet

  • Encoder: swin_tiny_patch4_window7_224
  • Decoder: upernet
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    62.16% 76.24% 75.33% 75.71% 75.31%
  • Params.: 29.4

General Informations


Training Config Hyperparameters

- Model architecture: swin_tiny_patch4_window7_224-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
    - AERIAL_RGBI:
        mean: [106.59, 105.66, 111.35]
        std:  [39.78, 52.23, 45.62]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 62.16%
Overall Accuracy 76.24%
F-score 75.33%
Precision 75.71%
Recall 75.31%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 82.37 90.33 90.46 90.20
greenhouse 72.11 83.80 79.52 88.57
swimming pool 58.68 73.96 71.85 76.19
impervious surface 74.27 85.23 85.56 84.92
pervious surface 55.75 71.59 70.49 72.73
bare soil 60.93 75.72 74.02 77.51
water 88.45 93.87 95.17 92.61
snow 64.39 78.34 91.63 68.41
herbaceous vegetation 52.59 68.93 70.88 67.09
agricultural land 55.37 71.27 67.69 75.25
plowed land 30.81 47.10 45.73 48.56
vineyard 76.44 86.65 84.87 88.50
deciduous 70.95 83.00 81.34 84.73
coniferous 60.39 75.31 80.00 71.13
brushwood 28.89 44.83 46.43 43.33

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080