IGNF
/

AGarioud's picture
Update README.md
be3c925 verified
metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
  - semantic segmentation
  - pytorch
  - landcover
model-index:
  - name: FLAIR-HUB_LC-D_swinbase-upernet
    results:
      - task:
          type: semantic-segmentation
        dataset:
          name: IGNF/FLAIR-HUB/
          type: earth-observation-dataset
        metrics:
          - type: mIoU
            value: 64.69
            name: mIoU
          - type: OA
            value: 77.631
            name: Overall Accuracy
          - type: IoU
            value: 83.967
            name: IoU building
          - type: IoU
            value: 78.902
            name: IoU greenhouse
          - type: IoU
            value: 61.59
            name: IoU swimming pool
          - type: IoU
            value: 75.83
            name: IoU impervious surface
          - type: IoU
            value: 57.539
            name: IoU pervious surface
          - type: IoU
            value: 63.025
            name: IoU bare soil
          - type: IoU
            value: 90.498
            name: IoU water
          - type: IoU
            value: 68.274
            name: IoU snow
          - type: IoU
            value: 54.417
            name: IoU herbaceous vegetation
          - type: IoU
            value: 57.48
            name: IoU agricultural land
          - type: IoU
            value: 36.857
            name: IoU plowed land
          - type: IoU
            value: 78.136
            name: IoU vineyard
          - type: IoU
            value: 71.93
            name: IoU deciduous
          - type: IoU
            value: 62.922
            name: IoU coniferous
          - type: IoU
            value: 29.421
            name: IoU brushwood
library_name: pytorch

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-D_swinbase-upernet

  • Encoder: swin_base_patch4_window12_384
  • Decoder: upernet
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    64.69% 77.63% 77.31% 77.65% 77.26%
  • Params.: 93.9

General Informations


Training Config Hyperparameters

- Model architecture: swin_base_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - AERIAL_RGBI : [4,1,2]
    - SENTINEL2_TS : [1,2,3,4,5,6,7,8,9,10]
- Input normalization (custom):
    - AERIAL_RGBI:
        mean: [106.59, 105.66, 111.35]
        std:  [39.78, 52.23, 45.62]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 64.69%
Overall Accuracy 77.63%
F-score 77.31%
Precision 77.65%
Recall 77.26%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 83.97 91.28 91.16 91.41
greenhouse 78.90 88.21 84.90 91.78
swimming pool 61.15 75.89 74.71 77.11
impervious surface 75.83 86.25 86.76 85.76
pervious surface 57.54 73.05 71.89 74.24
bare soil 63.02 77.32 73.88 81.09
water 90.50 95.01 95.89 94.15
snow 68.27 81.15 93.18 71.86
herbaceous vegetation 54.42 70.48 71.80 69.21
agricultural land 57.48 73.00 70.26 75.97
plowed land 36.86 53.86 53.55 54.18
vineyard 78.14 87.73 85.38 90.20
deciduous 71.93 83.67 82.34 85.05
coniferous 62.92 77.24 80.88 73.92
brushwood 29.42 45.47 48.18 43.04

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080