FLAIR-HUB -- Land-Cover mapping models (LC)
Collection
17 items
•
Updated
- Model architecture: UTAE
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- masked classes: [clear cut, ligneous, mixed, other] → weight = 0
- Input channels:
- SENTINEL2_TS : [1,2,3,4,5,6,7,8,9,10]
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Metric | Value |
---|---|
mIoU | 34.24% |
Overall Accuracy | 57.83% |
F-score | 47.30% |
Precision | 48.12% |
Recall | 47.59% |
Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
building | 34.91 | 51.75 | 54.37 | 49.37 |
greenhouse | 0.00 | 0.00 | 0.00 | 0.00 |
swimming pool | 0.00 | 0.00 | 0.00 | 0.00 |
impervious surface | 38.27 | 55.35 | 51.43 | 59.92 |
pervious surface | 27.43 | 43.05 | 51.24 | 37.12 |
bare soil | 33.59 | 50.29 | 56.33 | 45.42 |
water | 65.32 | 79.02 | 71.19 | 88.79 |
snow | 67.54 | 80.63 | 69.71 | 95.61 |
herbaceous vegetation | 34.44 | 51.23 | 51.81 | 50.66 |
agricultural land | 42.08 | 59.24 | 57.01 | 61.65 |
plowed land | 10.23 | 18.56 | 19.29 | 17.88 |
vineyard | 41.10 | 58.26 | 67.59 | 51.20 |
deciduous | 55.99 | 71.79 | 67.97 | 76.06 |
coniferous | 48.22 | 65.06 | 77.39 | 56.12 |
brushwood | 14.46 | 25.27 | 26.54 | 24.12 |
Selection deleted |
Aerial ROI
Inference ROI
BibTeX:
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
APA:
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080