IGNF
/

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-G_utae

  • Encoder: UTAE
  • Decoder: UTAE
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    34.24% 57.83% 47.30% 48.12% 47.59%
  • Params.: 0.9

General Informations


Training Config Hyperparameters

- Model architecture: UTAE
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - SENTINEL2_TS : [1,2,3,4,5,6,7,8,9,10]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 34.24%
Overall Accuracy 57.83%
F-score 47.30%
Precision 48.12%
Recall 47.59%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 34.91 51.75 54.37 49.37
greenhouse 0.00 0.00 0.00 0.00
swimming pool 0.00 0.00 0.00 0.00
impervious surface 38.27 55.35 51.43 59.92
pervious surface 27.43 43.05 51.24 37.12
bare soil 33.59 50.29 56.33 45.42
water 65.32 79.02 71.19 88.79
snow 67.54 80.63 69.71 95.61
herbaceous vegetation 34.44 51.23 51.81 50.66
agricultural land 42.08 59.24 57.01 61.65
plowed land 10.23 18.56 19.29 17.88
vineyard 41.10 58.26 67.59 51.20
deciduous 55.99 71.79 67.97 76.06
coniferous 48.22 65.06 77.39 56.12
brushwood 14.46 25.27 26.54 24.12
Selection deleted

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including IGNF/FLAIR-HUB_LC-G_utae

Evaluation results