metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
- semantic segmentation
- pytorch
- landcover
library_name: pytorch
model-index:
- name: FLAIR-HUB_LC-L_swinbase-upernet
results:
- task:
type: semantic-segmentation
dataset:
name: IGNF/FLAIR-HUB/
type: earth-observation-dataset
metrics:
- type: mIoU
value: 65.777
name: mIoU
- type: OA
value: 78.238
name: Overall Accuracy
- type: IoU
value: 85.306
name: IoU building
- type: IoU
value: 79.091
name: IoU greenhouse
- type: IoU
value: 61.59
name: IoU swimming pool
- type: IoU
value: 76.579
name: IoU impervious surface
- type: IoU
value: 58.249
name: IoU pervious surface
- type: IoU
value: 64.664
name: IoU bare soil
- type: IoU
value: 90.521
name: IoU water
- type: IoU
value: 73.412
name: IoU snow
- type: IoU
value: 55.133
name: IoU herbaceous vegetation
- type: IoU
value: 58.63
name: IoU agricultural land
- type: IoU
value: 37.548
name: IoU plowed land
- type: IoU
value: 78.56
name: IoU vineyard
- type: IoU
value: 72.26
name: IoU deciduous
- type: IoU
value: 63.548
name: IoU coniferous
- type: IoU
value: 31.121
name: IoU brushwood
🌐 FLAIR-HUB Model Collection
- Trained on: FLAIR-HUB dataset 🔗
- Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
- Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
- Decoders: UNet, UPerNet
- Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
- Class nomenclature: 15 classes for LC, 23 classes for LPIS
🔍 Model: FLAIR-HUB_LC-L_swinbase-upernet
- Encoder: swin_base_patch4_window12_384
- Decoder: upernet
- Metrics:
- Params.: 276.4
General Informations
- Contact: [email protected]
- Code repository: https://github.com/IGNF/FLAIR-HUB
- Paper: https://arxiv.org/abs/2506.07080
- Project Page: https://ignf.github.io/FLAIR/FLAIR-HUB/flairhub
- Developed by: IGN
- Compute infrastructure:
- software: python, pytorch-lightning
- hardware: HPC/AI resources provided by GENCI-IDRIS
- License: Etalab 2.0
Training Config Hyperparameters
- Model architecture: swin_base_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- masked classes: [clear cut, ligneous, mixed, other] → weight = 0
- Input channels:
- AERIAL_RGBI: [4, 1, 2]
- SPOT_RGBI: [4, 1, 2]
- SENTINEL2_TS: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- SENTINEL1-ASC_TS: [1, 2]
- SENTINEL1-DESC_TS: [1, 2]
- Input normalization (custom):
- AERIAL_RGBI:
mean: [106.59, 105.66, 111.35]
std: [39.78, 52.23, 45.62]
- SPOT_RGBI:
mean: [1137.03, 433.26, 508.75]
std: [543.11, 312.76, 284.61]
- DEM_ELEV:
means: [311.06, 311.06]
std: [537.55, 537.55]
Training Data
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700

Training Logging

Metrics
Metric | Value |
---|---|
mIoU | 65.78% |
Overall Accuracy | 78.24% |
F-score | 78.15% |
Precision | 78.28% |
Recall | 78.30% |
Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
building | 85.31 | 92.07 | 92.12 | 92.02 |
greenhouse | 79.09 | 88.32 | 84.61 | 92.38 |
swimming pool | 62.04 | 76.57 | 74.86 | 78.36 |
impervious surface | 76.58 | 86.74 | 86.65 | 86.82 |
pervious surface | 58.25 | 73.62 | 72.56 | 74.71 |
bare soil | 64.66 | 78.54 | 75.42 | 81.92 |
water | 90.52 | 95.02 | 95.87 | 94.20 |
snow | 73.41 | 84.67 | 96.42 | 75.47 |
herbaceous vegetation | 55.13 | 71.08 | 72.57 | 69.64 |
agricultural land | 58.63 | 73.92 | 70.75 | 77.39 |
plowed land | 37.55 | 54.60 | 53.74 | 55.48 |
vineyard | 78.56 | 87.99 | 85.42 | 90.72 |
deciduous | 72.26 | 83.90 | 83.69 | 84.10 |
coniferous | 63.55 | 77.71 | 79.25 | 76.23 |
brushwood | 31.12 | 47.47 | 50.24 | 44.99 |
Inference
Aerial ROI

Inference ROI

Cite
BibTeX:
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
APA:
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080