IGNF
/

AGarioud's picture
Update README.md
e560246 verified
metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
  - semantic segmentation
  - pytorch
  - landcover
library_name: pytorch
model-index:
  - name: FLAIR-HUB_LC-L_swinbase-upernet
    results:
      - task:
          type: semantic-segmentation
        dataset:
          name: IGNF/FLAIR-HUB/
          type: earth-observation-dataset
        metrics:
          - type: mIoU
            value: 65.777
            name: mIoU
          - type: OA
            value: 78.238
            name: Overall Accuracy
          - type: IoU
            value: 85.306
            name: IoU building
          - type: IoU
            value: 79.091
            name: IoU greenhouse
          - type: IoU
            value: 61.59
            name: IoU swimming pool
          - type: IoU
            value: 76.579
            name: IoU impervious surface
          - type: IoU
            value: 58.249
            name: IoU pervious surface
          - type: IoU
            value: 64.664
            name: IoU bare soil
          - type: IoU
            value: 90.521
            name: IoU water
          - type: IoU
            value: 73.412
            name: IoU snow
          - type: IoU
            value: 55.133
            name: IoU herbaceous vegetation
          - type: IoU
            value: 58.63
            name: IoU agricultural land
          - type: IoU
            value: 37.548
            name: IoU plowed land
          - type: IoU
            value: 78.56
            name: IoU vineyard
          - type: IoU
            value: 72.26
            name: IoU deciduous
          - type: IoU
            value: 63.548
            name: IoU coniferous
          - type: IoU
            value: 31.121
            name: IoU brushwood

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-L_swinbase-upernet

  • Encoder: swin_base_patch4_window12_384
  • Decoder: upernet
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    65.78% 78.24% 78.15% 78.28% 78.30%
  • Params.: 276.4

General Informations


Training Config Hyperparameters

- Model architecture: swin_base_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - AERIAL_RGBI: [4, 1, 2]
    - SPOT_RGBI: [4, 1, 2]
    - SENTINEL2_TS: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    - SENTINEL1-ASC_TS: [1, 2]
    - SENTINEL1-DESC_TS: [1, 2]
- Input normalization (custom):
    - AERIAL_RGBI:
        mean: [106.59, 105.66, 111.35]
        std:  [39.78, 52.23, 45.62]
    - SPOT_RGBI:
        mean: [1137.03, 433.26, 508.75]
        std:  [543.11, 312.76, 284.61]
    - DEM_ELEV:
        means: [311.06, 311.06]
        std: [537.55, 537.55]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 65.78%
Overall Accuracy 78.24%
F-score 78.15%
Precision 78.28%
Recall 78.30%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 85.31 92.07 92.12 92.02
greenhouse 79.09 88.32 84.61 92.38
swimming pool 62.04 76.57 74.86 78.36
impervious surface 76.58 86.74 86.65 86.82
pervious surface 58.25 73.62 72.56 74.71
bare soil 64.66 78.54 75.42 81.92
water 90.52 95.02 95.87 94.20
snow 73.41 84.67 96.42 75.47
herbaceous vegetation 55.13 71.08 72.57 69.64
agricultural land 58.63 73.92 70.75 77.39
plowed land 37.55 54.60 53.74 55.48
vineyard 78.56 87.99 85.42 90.72
deciduous 72.26 83.90 83.69 84.10
coniferous 63.55 77.71 79.25 76.23
brushwood 31.12 47.47 50.24 44.99

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080