Natural Order LMs
Collection
All the models trained in the paper 'Natural Order: Cross-lingual Limits of Transformer Language Acquisition'
•
35 items
•
Updated
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
37.7338 | 1.0 | 18 | 9.3648 |
35.7624 | 2.0 | 36 | 8.8937 |
33.8558 | 3.0 | 54 | 8.4733 |
32.0947 | 4.0 | 72 | 8.0390 |
30.1266 | 5.0 | 90 | 7.5550 |
28.1882 | 6.0 | 108 | 7.0654 |
26.5774 | 7.0 | 126 | 6.6686 |
25.9146 | 8.0 | 144 | 6.4362 |
25.232 | 9.0 | 162 | 6.3227 |
24.8537 | 10.0 | 180 | 6.2398 |
24.4154 | 11.0 | 198 | 6.1600 |
24.228 | 12.0 | 216 | 6.1035 |
24.0803 | 13.0 | 234 | 6.0586 |
24.0885 | 14.0 | 252 | 6.0192 |
23.6898 | 15.0 | 270 | 5.9871 |
23.4396 | 16.0 | 288 | 5.9482 |
23.4791 | 17.0 | 306 | 5.9201 |
23.2907 | 18.0 | 324 | 5.8843 |
23.3204 | 19.0 | 342 | 5.8601 |
22.9215 | 20.0 | 360 | 5.8303 |
22.8381 | 21.0 | 378 | 5.7999 |
22.9067 | 22.0 | 396 | 5.7706 |
22.4945 | 23.0 | 414 | 5.7395 |
22.5825 | 24.0 | 432 | 5.7105 |
22.2327 | 25.0 | 450 | 5.6771 |
22.1948 | 26.0 | 468 | 5.6481 |
22.1161 | 27.0 | 486 | 5.6131 |
21.7786 | 28.0 | 504 | 5.5857 |
21.608 | 29.0 | 522 | 5.5584 |
21.6092 | 30.0 | 540 | 5.5294 |
21.5158 | 31.0 | 558 | 5.5099 |
21.2812 | 32.0 | 576 | 5.4840 |
21.1324 | 33.0 | 594 | 5.4645 |
21.0367 | 34.0 | 612 | 5.4435 |
20.8917 | 35.0 | 630 | 5.4239 |
20.8304 | 36.0 | 648 | 5.4095 |
20.5685 | 37.0 | 666 | 5.3899 |
20.7227 | 38.0 | 684 | 5.3780 |
20.5019 | 39.0 | 702 | 5.3647 |
20.237 | 40.0 | 720 | 5.3504 |
20.2962 | 41.0 | 738 | 5.3395 |
20.1685 | 42.0 | 756 | 5.3290 |
20.0126 | 43.0 | 774 | 5.3224 |
19.9712 | 44.0 | 792 | 5.3135 |
20.0726 | 45.0 | 810 | 5.3062 |
19.7299 | 46.0 | 828 | 5.2992 |
19.623 | 47.0 | 846 | 5.2930 |
19.6938 | 48.0 | 864 | 5.2912 |
19.5416 | 49.0 | 882 | 5.2889 |
19.6437 | 50.0 | 900 | 5.2886 |
19.3772 | 51.0 | 918 | 5.2847 |
19.1646 | 52.0 | 936 | 5.2846 |
19.3211 | 53.0 | 954 | 5.2805 |
18.9739 | 54.0 | 972 | 5.2832 |
18.8837 | 55.0 | 990 | 5.2825 |
18.9044 | 56.0 | 1008 | 5.2842 |
18.9384 | 57.0 | 1026 | 5.2849 |
18.8621 | 58.0 | 1044 | 5.2873 |
18.7566 | 59.0 | 1062 | 5.2925 |
18.6145 | 60.0 | 1080 | 5.2943 |
18.4163 | 61.0 | 1098 | 5.3036 |
18.3534 | 62.0 | 1116 | 5.3079 |
18.502 | 63.0 | 1134 | 5.3107 |
18.2143 | 64.0 | 1152 | 5.3149 |
18.338 | 65.0 | 1170 | 5.3235 |
18.1699 | 66.0 | 1188 | 5.3293 |
18.1661 | 67.0 | 1206 | 5.3375 |
18.0224 | 68.0 | 1224 | 5.3471 |
17.6682 | 69.0 | 1242 | 5.3529 |
17.8052 | 70.0 | 1260 | 5.3615 |
17.5968 | 71.0 | 1278 | 5.3675 |
17.4778 | 72.0 | 1296 | 5.3773 |
17.6043 | 73.0 | 1314 | 5.3858 |
17.4908 | 74.0 | 1332 | 5.3964 |
17.3254 | 75.0 | 1350 | 5.4018 |
17.4003 | 76.0 | 1368 | 5.4124 |
17.3649 | 77.0 | 1386 | 5.4241 |
17.2245 | 78.0 | 1404 | 5.4301 |
17.3074 | 79.0 | 1422 | 5.4462 |
17.1521 | 80.0 | 1440 | 5.4551 |
16.811 | 81.0 | 1458 | 5.4611 |
16.9251 | 82.0 | 1476 | 5.4712 |
16.8495 | 83.0 | 1494 | 5.4820 |
16.9539 | 84.0 | 1512 | 5.4906 |
16.692 | 85.0 | 1530 | 5.4990 |
16.7383 | 86.0 | 1548 | 5.5123 |
16.6054 | 87.0 | 1566 | 5.5219 |
16.5755 | 88.0 | 1584 | 5.5302 |
16.4844 | 89.0 | 1602 | 5.5382 |
16.3689 | 90.0 | 1620 | 5.5526 |
16.3734 | 91.0 | 1638 | 5.5635 |
16.2672 | 92.0 | 1656 | 5.5733 |
16.2833 | 93.0 | 1674 | 5.5851 |
16.2626 | 94.0 | 1692 | 5.5924 |
16.1087 | 95.0 | 1710 | 5.6025 |
16.3242 | 96.0 | 1728 | 5.6100 |
16.0916 | 97.0 | 1746 | 5.6241 |
16.0279 | 98.0 | 1764 | 5.6313 |
15.9436 | 99.0 | 1782 | 5.6448 |
15.9385 | 100.0 | 1800 | 5.6488 |
15.9182 | 101.0 | 1818 | 5.6596 |
15.6631 | 102.0 | 1836 | 5.6721 |
15.7364 | 103.0 | 1854 | 5.6818 |
15.8297 | 104.0 | 1872 | 5.6852 |
15.7784 | 105.0 | 1890 | 5.6973 |
15.676 | 106.0 | 1908 | 5.7030 |
15.6292 | 107.0 | 1926 | 5.7139 |
15.5341 | 108.0 | 1944 | 5.7238 |
15.5014 | 109.0 | 1962 | 5.7322 |
15.4952 | 110.0 | 1980 | 5.7425 |
15.2674 | 111.0 | 1998 | 5.7469 |
15.3804 | 112.0 | 2016 | 5.7527 |
15.1628 | 113.0 | 2034 | 5.7648 |
15.2465 | 114.0 | 2052 | 5.7694 |
15.265 | 115.0 | 2070 | 5.7807 |
15.2491 | 116.0 | 2088 | 5.7871 |
15.187 | 117.0 | 2106 | 5.7928 |
15.2305 | 118.0 | 2124 | 5.8011 |
15.0624 | 119.0 | 2142 | 5.8061 |
15.0283 | 120.0 | 2160 | 5.8126 |
15.0128 | 121.0 | 2178 | 5.8241 |
14.9024 | 122.0 | 2196 | 5.8275 |
15.0507 | 123.0 | 2214 | 5.8336 |
14.9945 | 124.0 | 2232 | 5.8384 |
14.9695 | 125.0 | 2250 | 5.8458 |
14.9255 | 126.0 | 2268 | 5.8542 |
14.8809 | 127.0 | 2286 | 5.8562 |
14.8236 | 128.0 | 2304 | 5.8621 |
14.715 | 129.0 | 2322 | 5.8650 |
14.7913 | 130.0 | 2340 | 5.8739 |
14.8002 | 131.0 | 2358 | 5.8759 |
14.7913 | 132.0 | 2376 | 5.8817 |
14.7532 | 133.0 | 2394 | 5.8849 |
14.7149 | 134.0 | 2412 | 5.8883 |
14.7549 | 135.0 | 2430 | 5.8916 |
14.6338 | 136.0 | 2448 | 5.8976 |
14.6065 | 137.0 | 2466 | 5.9038 |
14.6682 | 138.0 | 2484 | 5.9063 |
14.6515 | 139.0 | 2502 | 5.9084 |
14.713 | 140.0 | 2520 | 5.9124 |
14.5961 | 141.0 | 2538 | 5.9161 |
14.6323 | 142.0 | 2556 | 5.9189 |
14.3841 | 143.0 | 2574 | 5.9198 |
14.4734 | 144.0 | 2592 | 5.9218 |
14.4725 | 145.0 | 2610 | 5.9243 |
14.5212 | 146.0 | 2628 | 5.9275 |
14.5615 | 147.0 | 2646 | 5.9290 |
14.5326 | 148.0 | 2664 | 5.9303 |
14.4589 | 149.0 | 2682 | 5.9320 |
14.4737 | 150.0 | 2700 | 5.9347 |
14.5569 | 151.0 | 2718 | 5.9346 |
14.6112 | 152.0 | 2736 | 5.9364 |
14.4516 | 153.0 | 2754 | 5.9379 |
14.4938 | 154.0 | 2772 | 5.9372 |
14.4729 | 155.0 | 2790 | 5.9397 |
14.3714 | 156.0 | 2808 | 5.9405 |
14.3877 | 157.0 | 2826 | 5.9403 |
14.4449 | 158.0 | 2844 | 5.9419 |
14.349 | 159.0 | 2862 | 5.9414 |
14.3506 | 160.0 | 2880 | 5.9424 |
14.4542 | 161.0 | 2898 | 5.9425 |
14.3577 | 162.0 | 2916 | 5.9427 |
14.4566 | 163.0 | 2934 | 5.9427 |
14.4671 | 164.0 | 2952 | 5.9429 |
14.4485 | 165.0 | 2970 | 5.9430 |
14.4603 | 166.0 | 2988 | 5.9430 |
28.6518 | 166.6857 | 3000 | 5.9430 |