resnet-50_finetuned

This model is a fine-tuned version of microsoft/resnet-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7209
  • Precision: 0.3702
  • Recall: 0.5
  • F1: 0.4254
  • Accuracy: 0.7404

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 46 0.6599 0.3702 0.5 0.4254 0.7404
No log 2.0 92 0.6725 0.3702 0.5 0.4254 0.7404
No log 3.0 138 nan 0.8714 0.5062 0.4384 0.7436
No log 4.0 184 nan 0.8714 0.5062 0.4384 0.7436
No log 5.0 230 nan 0.8714 0.5062 0.4384 0.7436
No log 6.0 276 nan 0.8714 0.5062 0.4384 0.7436
No log 7.0 322 nan 0.8714 0.5062 0.4384 0.7436
No log 8.0 368 nan 0.8714 0.5062 0.4384 0.7436
No log 9.0 414 nan 0.8714 0.5062 0.4384 0.7436
No log 10.0 460 0.7209 0.3702 0.5 0.4254 0.7404

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.1
  • Tokenizers 0.12.1
Downloads last month
25
Safetensors
Model size
23.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.