Files changed (1) hide show
  1. README.md +63 -0
README.md CHANGED
@@ -1,3 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ## License summary
2
 
3
  1. The Licensed Models are **only** available under this License for Non-Commercial Purposes.
 
1
+ # MACE
2
+ ## Reference
3
+ Ilyes Batatia, Dávid Péter Kovács, Gregor N. C. Simm, Christoph Ortner, and Gábor Csányi.
4
+ Mace: Higher order equivariant message passing neural networks for fast and accurate force fields,
5
+ 2023.
6
+
7
+ URL: https://arxiv.org/abs/2206.07697
8
+ ## How to Use
9
+ For complete usage instructions and more information, please refer to our [documentation](https://instadeep.github.io/mlip)
10
+ ## Model architecture
11
+ | Parameter | Value | Description |
12
+ |----------------------------------|----------------------|--------------------------------------------------------------------------------------|
13
+ | `num_layers` | `2` | Number of MACE layers. |
14
+ | `num_channels` | `128` | Number of channels. |
15
+ | `l_max` | `3` | Highest degree of spherical harmonics. |
16
+ | `node_symmetry` | `3` | Highest degree of node features kept after the node-wise power expansion of features.|
17
+ | `correlation` | `2` | Maximum correlation order. |
18
+ | `readout_irreps` | `["16x0e","0e"]` | Irreps for the readout block. |
19
+ | `num_readout_heads` | `1` | Number of readout heads. |
20
+ | `include_pseudotensors` | `False` | Whether to include pseudo-tensors. |
21
+ | `num_bessel` | `8` | Number of Bessel basis functions. |
22
+ | `activation` | `silu` | The activation function used in the non-linear readout block. |
23
+ | `radial_envelope` | `polynomial_envelope`| The radial envelope function. |
24
+ | `symmetric_tensor_product_basis` | `False` | Whether to use a symmetric tensor product basis. |
25
+ | `atomic_energies` | `average` | Treatment of the atomic energies. |
26
+ | `avg_um_neighbors` | `None` | Mean number of neighbors. |
27
+
28
+
29
+ For more information about MACE hyperparameters,
30
+ please refer to our [documentation](https://instadeep.github.io/mlip/api_reference/models/mace.html#mlip.models.visnet.config.MaceConfig)
31
+ ## Training
32
+ Training is performed over 220 epochs, with an exponential moving average (EMA) decay rate of 0.99.
33
+ The model employs a MSE loss function with scheduled weights for the energy and force components.
34
+ Initially, the energy term is weighted at 40 and the force term at 1000.
35
+ At epoch 115, these weights are flipped.
36
+ We use our default MLIP optimizer in v1.0.0 with the following settings:
37
+ | Parameter | Value | Description |
38
+ |----------------------------------|----------------|-----------------------------------------------------------------|
39
+ | `init_learning_rate` | `0.01` | Initial learning rate. |
40
+ | `peak_learning_rate` | `0.01` | Peak learning rate. |
41
+ | `final_learning_rate` | `0.01` | Final learning rate. |
42
+ | `weight_decay` | `0` | Weight decay. |
43
+ | `warmup_steps` | `4000` | Number of optimizer warm-up steps. |
44
+ | `transition_steps` | `360000` | Number of optimizer transition steps. |
45
+ | `grad_norm` | `500` | Gradient norm used for gradient clipping. |
46
+ | `num_gradient_accumulation_steps`| `1` | Steps to accumulate before taking an optimizer step. |
47
+
48
+
49
+ For more information about the optimizer,
50
+ please refer to our [documentation](https://instadeep.github.io/mlip/api_reference/training/optimizer.html#mlip.training.optimizer_config.OptimizerConfig)
51
+ ## Dataset
52
+ | Parameter | Value | Description |
53
+ |-----------------------------|-------|--------------------------------------------|
54
+ | `graph_cutoff_angstrom` | `5` | Graph cutoff distance (in Å). |
55
+ | `max_n_node` | `32` | Maximum number of nodes allowed in a batch.|
56
+ | `max_n_edge` | `288` | Maximum number of edges allowed in a batch.|
57
+ | `batch_size` | `64` | Number of graphs in a batch. |
58
+
59
+
60
+ This model was trained on the [SPICE2_curated dataset](https://huggingface.co/datasets/InstaDeepAI/SPICE2-curated).
61
+ For more information about dataset configuration
62
+ please refer to our [documentation](https://instadeep.github.io/mlip/api_reference/data/dataset_configs.html#mlip.data.configs.GraphDatasetBuilderConfig)
63
+
64
  ## License summary
65
 
66
  1. The Licensed Models are **only** available under this License for Non-Commercial Purposes.