Files changed (1) hide show
  1. README.md +67 -0
README.md CHANGED
@@ -1,3 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ## License summary
2
 
3
  1. The Licensed Models are **only** available under this License for Non-Commercial Purposes.
 
1
+ # ViSNet
2
+ ## Reference
3
+ Yusong Wang, Tong Wang, Shaoning Li, Xinheng He, Mingyu Li, Zun Wang, Nanning Zheng, Bin Shao, and Tie-Yan Liu.
4
+ Enhancing geometric representations for molecules with equivariant vector-scalar interactive message passing.
5
+ Nature Communications, 15(1), January 2024. ISSN: 2041-1723.
6
+ URL: https://dx.doi.org/10.1038/s41467-023-43720-2.
7
+ ## Hyperparameters, model configurations and training strategies
8
+ ### Model architecture
9
+ | Parameter | Value | Description |
10
+ |--------------------|----------|--------------------------------------------------------------------------|
11
+ | `num_layers` | `4` | Number of ViSNet layers. |
12
+ | `num_channels` | `128` | Number of channels. |
13
+ | `l_max` | `2` | Highest harmonic order included in the Spherical Harmonics series. |
14
+ | `num_heads` | `8` | Number of heads in the attention block. |
15
+ | `num_rbf` | `32` | Number of radial basis functions in the embedding block. |
16
+ | `trainable_rbf` | `False` | Whether to add learnable weights to the radial embedding basis functions.|
17
+ | `activation` | `silu` | Activation function for the output block. |
18
+ | `attn_activation` | `silu` | Activation function for the attention block. |
19
+ | `vecnorm_type` | `None` | Type of the vector norm. |
20
+ | `atomic_energies` | `average`| Treatment of the atomic energies. |
21
+ | `avg_um_neighbors` | `None` | Mean number of neighbors. |
22
+ ### Training
23
+ | Parameter | Value | Description |
24
+ |--------------------------|--------|--------------------------------------------------|
25
+ | `num_epochs` | `220` | Number of epochs to run. |
26
+ | `ema_decay` | `0.99` | The EMA decay rate. |
27
+ | `eval_num_graphs` | `None` | Number of validation set graphs to evaluate on. |
28
+ | `use_ema_params_for_eval`| `True` | Whether to use the EMA parameters for evaluation.|
29
+ ### Optimizer
30
+ | Parameter | Value | Description |
31
+ |----------------------------------|----------------|-----------------------------------------------------------------|
32
+ | `init_learning_rate` | `0.0001` | Initial learning rate. |
33
+ | `peak_learning_rate` | `0.0001` | Peak learning rate. |
34
+ | `final_learning_rate` | `0.0001` | Final learning rate. |
35
+ | `weight_decay` | `0` | Weight decay. |
36
+ | `warmup_steps` | `4000` | Number of optimizer warm-up steps. |
37
+ | `transition_steps` | `360000` | Number of optimizer transition steps. |
38
+ | `grad_norm` | `500` | Gradient norm used for gradient clipping. |
39
+ | `num_gradient_accumulation_steps`| `1` | Steps to accumulate before taking an optimizer step. |
40
+ | `algorithm` | `optax.amsgrad`| The AMSGrad optimizer. |
41
+ | `b1` | `0.9` | Exponential decay rate to track first moment of past gradients. |
42
+ | `b2` | `0.999` | Exponential decay rate to track second moment of past gradients.|
43
+ | `eps` | `1e-8` | Constant applied to denominator outside the square root. |
44
+ | `eps_root` | `0.0` | Constant applied to denominator inside the square root. |
45
+ ### Huber Loss Energy weight schedule
46
+ | Parameter | Value | Description |
47
+ |-----------------------|------------------------------------|-------------------------------------------------------------------------------------------------|
48
+ | `schedule` | `optax.piecewise_constant_schedule`| Piecewise constant schedule with scaled jumps at specific boundaries. |
49
+ | `init_value` | `40` | Initial value. |
50
+ | `boundaries_and_scale`| `{115: 25}` | Dictionary of {step: scale} where scale is multiplied into the schedule value at the given step.|
51
+ ### Huber Loss Force weight schedule
52
+ | Parameter | Value | Description |
53
+ |-----------------------|------------------------------------|-------------------------------------------------------------------------------------------------|
54
+ | `schedule` | `optax.piecewise_constant_schedule`| Piecewise constant schedule with scaled jumps at specific boundaries. |
55
+ | `init_value` | `1000` | Initial value. |
56
+ | `boundaries_and_scale`| `{115: 0.04}` | Dictionary of {step: scale} where scale is multiplied into the schedule value at the given step.|
57
+ ### Dataset
58
+ | Parameter | Value | Description |
59
+ |-----------------------------|-------|--------------------------------------------|
60
+ | `graph_cutoff_angstrom` | `5` | Graph cutoff distance (in Å). |
61
+ | `max_n_node` | `32` | Maximum number of nodes allowed in a batch.|
62
+ | `max_n_edge` | `288` | Maximum number of edges allowed in a batch.|
63
+ | `batch_size` | `16` | Number of graphs in a batch. |
64
+ This model was trained on the [SPICE2_curated dataset](https://huggingface.co/datasets/InstaDeepAI/SPICE2-curated).
65
+ ## How to Use
66
+ For complete usage instructions and more information, please refer to our [documentation](https://instadeep.github.io/mlip)
67
+
68
  ## License summary
69
 
70
  1. The Licensed Models are **only** available under this License for Non-Commercial Purposes.