Model Details
This model is a gguf q4ks format of openai/gpt-oss-120b generated by intel/auto-round algorithm.
Please follow the license of the original model.
How To Use
Llamacpp inference
llama-cli -hf Intel/gpt-oss-120b-gguf-q4ks-AutoRound
> Write a quick sort algorithm.
<|channel|>analysis<|message|>The user: "Write a quick sort algorithm." Likely they want code in some language. I should provide a quicksort implementation, possibly multiple languages, explain. I can give Python example. Also discuss partition scheme. Provide code.
I'll respond with an example in Python, plus explanation. Also could include C++ version. Provide generic.<|start|>assistant<|channel|>final<|message|>Below is a complete, readyβtoβrun implementation of the QuickβSort algorithm together with a short explanation of how it works.
Youβll find versions in **Python**, **C++**, and **JavaScript** so you can pick the one that best fits your project.
---
## 1. QuickβSort Overview
QuickβSort is a divideβandβconquer sorting algorithm that works in three steps:
1. **Choose a pivot** element from the array (any element works, but a good choice reduces the chance of worstβcase O(nΒ²) behavior).
2. **Partition** the array into two subβarrays:
* Elements **β€ pivot** go to the left side.
* Elements **> pivot** go to the right side.
3. **Recursively** apply QuickβSort to the left and right subβarrays.
The algorithm runs in **average O(nβ―logβ―n)** time and **O(logβ―n)** extra space (the recursion stack). The inβplace version shown below uses the **Lomuto partition scheme**, which is easy to understand and implement.
---
## 2. Python Implementation (InβPlace)
```python
def quicksort(arr, low=0, high=None):
"""
Inβplace quicksort.
Parameters
----------
arr : list
The list to be sorted.
low : int, optional
Starting index of the subβlist to sort (default 0).
high : int, optional
End index (inclusive) of the subβlist to sort.
If None, the whole list is sorted.
"""
if high is None:
high = len(arr) - 1
# Base case: a segment of length 0 or 1 is already sorted
if low < high:
# Partition the segment and get the pivot's final index
p = _partition(arr, low, high)
# Recursively sort the two halves
quicksort(arr, low, p - 1)
quicksort(arr, p + 1, high)
def _partition(arr, low, high):
"""
Lomuto partition scheme.
Returns the final index of the pivot.
"""
pivot = arr[high] # Choose the rightmost element as pivot
i = low - 1 # Index of the smaller element
for j in range(low, high):
if arr[j] <= pivot: # If current element <= pivot
i += 1
arr[i], arr[j] = arr[j], arr[i] # Swap it to the front
# Place the pivot after the last smaller element
arr[i + 1], arr[high] = arr[high], arr[i + 1]
return i + 1 # Return the pivot's final position
# -----------------------------
# Example usage
if __name__ == "__main__":
data = [33, 10, 55, 71, 29, 3, 90, 42]
print("Before:", data)
quicksort(data)
print("After :", data)
```
**What the code does**
* `quicksort` is the public entry point. It accepts a mutable list and sorts it in place.
* `_partition` rearranges the elements around a pivot (chosen as the last element). After partitioning, every element left of the returned index is β€ pivot, and everything right is > pivot.
* The recursion depth is bounded by `O(log n)` on average, but in the worst case (already sorted input with the naive pivot choice) it can degrade to `O(n)`. To avoid that, you can:
* Randomly shuffle the array before sorting, **or**
* Use a **medianβofβthree** or **random pivot** selection inside `_partition`.
---
## 3. C++ Implementation (InβPlace)
```cpp
#include <iostream>
#include <vector>
#include <cstdlib> // std::rand, std::srand
#include <ctime> // std::time
// Lomuto partition
int partition(std::vector<int>& a, int low, int high) {
int pivot = a[high]; // Choose rightmost element as pivot
int i = low - 1; // Index of smaller element
for (int j = low; j < high; ++j) {
if (a[j] <= pivot) {
++i;
std::swap(a[i], a[j]);
}
}
std::swap(a[i + 1], a[high]); // Place pivot in its final spot
return i + 1; // Return pivot index
}
// Recursive quicksort
void quicksort(std::vector<int>& a, int low, int high) {
if (low < high) {
int p = partition(a, low, high);
quicksort(a, low, p - 1);
quicksort(a, p + 1, high);
}
}
// Helper that sorts the whole vector
void quicksort(std::vector<int>& a) {
quicksort(a, 0, static_cast<int>(a.size()) - 1);
}
// -------------------------------------------------
int main() {
std::srand(static_cast<unsigned>(std::time(nullptr))); // optional random seed
std::vector<int> data = {33, 10, 55, 71, 29, 3, 90, 42};
std::cout << "Before: ";
for (int x : data) std::cout << x << ' ';
std::cout << '\n';
quicksort(data);
std::cout << "After : ";
for (int x : data) std::cout << x << ' ';
std::cout << '\n';
}
```
**Notes**
* The algorithm is identical to the Python version, just expressed with C++ syntax.
* `std::swap` does the element exchange.
* If you want a *random pivot* to improve average performance, replace the line `int pivot = a[high];` with:
```cpp
int randIdx = low + std::rand() % (high - low + 1);
std::swap(a[randIdx], a[high]); // move random element to the end
int pivot = a[high];
```
---
## 4. JavaScript Implementation (InβPlace)
```js
/**
* Inβplace quicksort for an array of numbers.
* @param {Array<number>} arr - The array to sort.
* @param {number} low - Starting index (default 0).
* @param {number} high - Ending index (default arr.lengthβ1).
*/
function quicksort(arr, low = 0, high = arr.length - 1) {
if (low < high) {
const p = partition(arr, low, high);
quicksort(arr, low, p - 1);
quicksort(arr, p + 1, high);
}
}
/**
* Lomuto partition scheme.
* @returns {number} Final index of the pivot.
*/
function partition(arr, low, high) {
const pivot = arr[high]; // rightmost element as pivot
let i = low - 1;
for (let j = low; j < high; ++j) {
if (arr[j] <= pivot) {
++i;
[arr[i], arr[j]] = [arr[j], arr[i]]; // swap via destructuring
}
}
// place pivot after the last smaller element
[arr[i + 1], arr[high]] = [arr[high], arr[i + 1]];
return i + 1;
}
// ---------------------------
// Example usage
const data = [33, 10, 55, 71, 29, 3, 90, 42];
console.log('Before:', data);
quicksort(data);
console.log('After :', data);
```
---
## 5. QuickβSort Variants & Tips
| Variant | When to use it | Key idea |
|---------|----------------|----------|
| **Random pivot** | When you canβt guarantee input order | Randomly pick a pivot to make worstβcase probability negligible |
| **Medianβofβthree** | Small overhead, good practical performance | Choose pivot as median of first, middle, last elements |
| **Threeβway (Dutchβnationalβflag) partition** | When the array contains many duplicate keys | Split into `< pivot`, `= pivot`, `> pivot` to avoid O(nΒ²) on many equal elements |
| **Iterative QuickβSort** | When recursion depth may overflow (very large arrays) | Use an explicit stack (or tailβcall optimisation) instead of recursion |
---
## 6. Complexity Recap
| Metric | Average case | Worst case | Space (auxiliary) |
|--------|--------------|-----------|-------------------|
| Time | **O(nβ―logβ―n)** | **O(nΒ²)** (e.g., already sorted with naive pivot) | **O(logβ―n)** recursion depth (inβplace) |
| Stability | **No** (elements with equal keys may be reordered) | β | β |
If you need a **stable** sort, consider MergeβSort or TimSort (the algorithm used by Pythonβs builtβin `list.sort()`).
---
### TL;DR β QuickβSort in a nutshell
```python
def quicksort(arr):
if len(arr) <= 1:
return arr
pivot = arr[-1]
left = [x for x in arr[:-1] if x <= pivot]
right = [x for x in arr[:-1] if x > pivot]
return quicksort(left) + [pivot] + quicksort(right)
```
The oneβliner above is a **functional** (nonβinβplace) version that is easy to understand but uses O(n) extra memory for each recursive call.
Pick the version that fits your constraints, and youβll have a fast, reliable sorting routine ready to go!
Generate the model
Requirement
pip install git+https://github.com/intel/auto-round.git@hengguo/gguf_update_0806
Here is the sample command to reproduce the model
auto_round --format gguf:q4_k_s --iters 0 --nsamples 512 --model openai/gpt-oss-120b --output_dir tmp_autoround
Ethical Considerations and Limitations
The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
Therefore, before deploying any applications of the model, developers should perform safety testing.
Caveats and Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
Here are a couple of useful links to learn more about Intel's AI software:
- Intel Neural Compressor link
Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.
Cite
@article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao and Liu, Yi}, journal={arXiv preprint arXiv:2309.05516}, year={2023} }
- Downloads last month
- 130
4-bit
Model tree for Intel/gpt-oss-120b-gguf-q4ks-AutoRound
Base model
openai/gpt-oss-20b