IoanaLiviaPopescu's picture
End of training
db51c16 verified
metadata
library_name: transformers
language:
  - ro
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - IoanaLivia/RealVoiceSynthVoice-1600-1-St-Emil
metrics:
  - wer
model-index:
  - name: >-
      IoanaLiviaPopescu/
      IoanaLiviaPopescu/real-data-synth-data-1600-1-St-Emil-whisper-small
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: IoanaLivia/RealVoiceSynthVoice-1600-1-St-Emil
          type: IoanaLivia/RealVoiceSynthVoice-1600-1-St-Emil
          config: default
          split: test
          args: 'split: validation'
        metrics:
          - name: Wer
            type: wer
            value: 17.038539553752535

IoanaLiviaPopescu/ IoanaLiviaPopescu/real-data-synth-data-1600-1-St-Emil-whisper-small

This model is a fine-tuned version of openai/whisper-small on the IoanaLivia/RealVoiceSynthVoice-1600-1-St-Emil dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3718
  • Wer: 17.0385

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0 0 0.6024 27.8812
0.282 1.0 51 0.3977 18.3109
0.1077 2.0 102 0.3658 17.3151
0.0561 3.0 153 0.3718 17.0385
0.0328 4.0 204 0.3881 17.3889
0.023 5.0 255 0.4000 17.7208

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1