metadata
library_name: transformers
language:
- ro
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- IoanaLivia/RealVoiceSynthVoice-1600-1-St-Emil
metrics:
- wer
model-index:
- name: >-
IoanaLiviaPopescu/
IoanaLiviaPopescu/real-data-synth-data-1600-1-St-Emil-whisper-small
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: IoanaLivia/RealVoiceSynthVoice-1600-1-St-Emil
type: IoanaLivia/RealVoiceSynthVoice-1600-1-St-Emil
config: default
split: test
args: 'split: validation'
metrics:
- name: Wer
type: wer
value: 17.038539553752535
IoanaLiviaPopescu/ IoanaLiviaPopescu/real-data-synth-data-1600-1-St-Emil-whisper-small
This model is a fine-tuned version of openai/whisper-small on the IoanaLivia/RealVoiceSynthVoice-1600-1-St-Emil dataset. It achieves the following results on the evaluation set:
- Loss: 0.3718
- Wer: 17.0385
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| No log | 0 | 0 | 0.6024 | 27.8812 |
| 0.282 | 1.0 | 51 | 0.3977 | 18.3109 |
| 0.1077 | 2.0 | 102 | 0.3658 | 17.3151 |
| 0.0561 | 3.0 | 153 | 0.3718 | 17.0385 |
| 0.0328 | 4.0 | 204 | 0.3881 | 17.3889 |
| 0.023 | 5.0 | 255 | 0.4000 | 17.7208 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1