IoanaLiviaPopescu's picture
End of training
c047a1c verified
metadata
library_name: transformers
language:
  - ro
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - IoanaLiviaPopescu/RealVoiceSynthVoice-1600-1-Wavenet-B
metrics:
  - wer
model-index:
  - name: >-
      IoanaLiviaPopescu/IoanaLiviaPopescu/real-data-synth-data-1600-1-Wavenet-B-whisper-small
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: IoanaLiviaPopescu/RealVoiceSynthVoice-1600-1-Wavenet-B
          type: IoanaLiviaPopescu/RealVoiceSynthVoice-1600-1-Wavenet-B
          config: default
          split: test
          args: 'split: validation'
        metrics:
          - name: Wer
            type: wer
            value: 16.79881984141619

IoanaLiviaPopescu/IoanaLiviaPopescu/real-data-synth-data-1600-1-Wavenet-B-whisper-small

This model is a fine-tuned version of openai/whisper-small on the IoanaLiviaPopescu/RealVoiceSynthVoice-1600-1-Wavenet-B dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3742
  • Wer: 16.7988

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0 0 0.6024 27.8812
0.2466 1.0 63 0.3919 17.3336
0.0899 2.0 126 0.3717 16.8726
0.0465 3.0 189 0.3742 16.7988
0.0265 4.0 252 0.3877 17.2598
0.0187 5.0 315 0.4030 17.5180

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1