Phi‑2‑Alpaca‑LoRA
Overview
This repository contains LoRA‑tuned weights for microsoft/phi‑2 (2.7B).
The adapters were trained on:
- yahma/alpaca-cleaned (~5k instructions)
- Custom instruction datasets (collected separately)
Targets: q_proj
, k_proj
, v_proj
, dense
layers within the transformer.
Adapters were merged after training to produce a standalone Hugging Face checkpoint.
Training setup
- LoRA config: rank=16, α=32, dropout=0.05
- Max seq length: 256
- Optimizer: AdamW, lr=2e‑4
- Precision: bf16 (fp16 fallback)
Example
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "Irfanuruchi/phi-2-alpaca-lora"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
prompt = "### Instruction: List three advantages of modular code.\n### Response:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.inference_mode():
outputs = model.generate(
**inputs,
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Limitations
- Context length capped at 256 tokens
- Can return hallucinated or biased content
- Output tone/style depends on Alpaca + custom data
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Irfanuruchi/phi-2-alpaca-lora
Base model
microsoft/phi-2