semantic-bert-balanced-dataset

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1862
  • Accuracy: 0.5448

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 160 0.8837 0.5746
No log 2.0 320 0.9415 0.5490
No log 3.0 480 1.0334 0.5669
0.7136 4.0 640 1.1917 0.5661
0.7136 5.0 800 1.3571 0.5780
0.7136 6.0 960 1.6461 0.5772
0.2277 7.0 1120 2.1103 0.5533
0.2277 8.0 1280 2.3829 0.5584
0.2277 9.0 1440 2.4821 0.5618
0.0617 10.0 1600 2.7549 0.5371
0.0617 11.0 1760 2.8267 0.5499
0.0617 12.0 1920 2.9028 0.5490
0.0242 13.0 2080 2.9845 0.5465
0.0242 14.0 2240 3.0126 0.5541
0.0242 15.0 2400 3.0791 0.5490
0.0086 16.0 2560 3.0980 0.5499
0.0086 17.0 2720 3.1564 0.5456
0.0086 18.0 2880 3.1723 0.5499
0.0048 19.0 3040 3.1791 0.5473
0.0048 20.0 3200 3.1862 0.5448

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.3.0.dev20231224
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
10
Safetensors
Model size
67M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for J1mb0o/semantic-bert-balanced-dataset

Finetuned
(9227)
this model