semantic-bert-imbalanced-dataset

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3940
  • Accuracy: 0.5926

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 367 0.8237 0.6017
0.7608 2.0 734 0.8750 0.5834
0.5139 3.0 1101 0.9829 0.5946
0.5139 4.0 1468 1.2406 0.5870
0.3119 5.0 1835 1.5168 0.5865
0.1501 6.0 2202 2.0461 0.5814
0.0981 7.0 2569 2.2575 0.5860
0.0981 8.0 2936 2.6289 0.5804
0.0647 9.0 3303 2.8079 0.5844
0.0436 10.0 3670 2.9811 0.5824
0.0271 11.0 4037 3.0669 0.5875
0.0271 12.0 4404 3.1201 0.5834
0.0153 13.0 4771 3.1980 0.5910
0.0189 14.0 5138 3.2317 0.5931
0.0158 15.0 5505 3.2659 0.5885
0.0158 16.0 5872 3.3860 0.5875
0.0122 17.0 6239 3.3302 0.5956
0.0107 18.0 6606 3.3341 0.5946
0.0107 19.0 6973 3.4042 0.5931
0.0078 20.0 7340 3.3940 0.5926

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.3.0.dev20231224
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
18
Safetensors
Model size
67M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for J1mb0o/semantic-bert-imbalanced-dataset

Finetuned
(9231)
this model