Mistral-CultriX-slerp

Research & Development for AutoSynthetix AI

🌐 Website https://autosynthetix.com/

πŸ“¨ Discord https://discord.gg/pAKqENStQr

πŸ“¦ GitHub https://github.com/jdwebprogrammer

πŸ“¦ GitLab https://gitlab.com/jdwebprogrammer

πŸ† Patreon https://patreon.com/jdwebprogrammer

πŸ“· YouTube https://www.youtube.com/@jdwebprogrammer

πŸ“Ί Twitch https://www.twitch.tv/jdwebprogrammer

🐦 Twitter(X) https://twitter.com/jdwebprogrammer

  • License includes the license of the model derivatives:

Mistral-CultriX-slerp is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: mistralai/Mistral-7B-v0.1
        layer_range: [0, 32]
      - model: CultriX/NeuralTrix-7B-dpo
        layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-v0.1
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "JDWebProgrammer/Mistral-CultriX-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
8
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for JDWebProgrammer/Mistral-CultriX-slerp

Merge model
this model
Quantizations
1 model